Азот - это что за вещество? Типы и свойства азота. Смотреть что такое "азот" в других словарях Азот характеристика элемента по таблице менделеева

Азот – это химический элемент с атомным номером 7. Является газом без запаха, вкуса и цвета.


Таким образом, человек не ощущает присутствия азота в земной атмосфере, между тем как она состоит из этого вещества на 78 процентов. Азот относится к самым распространенным веществам на нашей планете. Часто можно слышать, что без азота не было бы , и это правда. Ведь белковые соединения, из которых состоит все живое, обязательно содержат в себе азот.

Азот в природе

Азот находится в атмосфере в виде молекул, состоящих из двух атомов. Помимо атмосферы, азот есть в мантии Земли и в гумусном слое почвы. Основной источник азота для промышленного производства – это полезные ископаемые.

Однако в последние десятилетия, когда запасы минералов стали истощаться, возникла острая необходимость выделения азота из воздуха в промышленных масштабах. В настоящее время эта проблема решена, и огромные объемы азота для нужд промышленности добываются из атмосферы.

Роль азота в биологии, круговорот азота

На Земле азот претерпевает ряд трансформаций, в которых участвуют и биотические (связанные с жизнью) и абиотические факторы. Из атмосферы и почвы азот поступает в растения, причем не напрямую, а через микроорганизмы. Азотфиксирующие бактерии удерживают и перерабатывают азот, превращая его в форму, легко усваиваемую растениями. В организме растений азот переходит в состав сложных соединений, в частности – белков.

По пищевой цепи эти вещества попадают в организмы травоядных, а затем – хищников. После гибели всего живого азот вновь попадает в почву, где подвергается разложению (аммонификации и денитрификации). Азот фиксируется в грунте, минералах, воде, попадает в атмосферу, и круг повторяется.

Применение азота

После открытия азота (это произошло в 18-м столетии), были хорошо изучены свойства самого вещества, его соединений, возможности использования в хозяйстве. Поскольку запасы азота на нашей планете огромны, данный элемент стал использоваться крайне активно.


Чистый азот применяется в жидком или газообразном виде. Жидкий азот имеет температуру минус 196 градусов по Цельсию и применяется в следующих областях:

в медицине. Жидкий азот является хладагентом при процедурах криотерапии, то есть лечения холодом. Мгновенная заморозка применяется для удаления различных новообразований. В жидком азоте хранят образцы тканей и живые клетки (в частности – сперматозоиды и яйцеклетки). Низкая температура позволяет сохранить биоматериал в течение длительного времени, а затем разморозить и использовать.

Возможность хранить в жидком азоте целые живые организмы, а при необходимости размораживать их без всякого вреда высказана писателями-фантастами. Однако в реальности освоить эту технологию пока не удалось;

в пищевой промышленности жидкий азот используется при розливе жидкостей для создания инертной среды в таре.

Вообще азот применяется в тех областях, где необходима газообразная среда без кислорода, например,

в пожаротушении . Азот вытесняет кислород, без которого процессы горения не поддерживаются и огонь затухает.

Газообразный азот нашел применение в таких отраслях:

производство продуктов питания . Азот используется как инертная газовая среда для сохранения свежести продуктов в упаковке;

в нефтедобывающей промышленности и горном деле . Азотом продувают трубопроводы и резервуары, его нагнетают в шахты для формирования взрывобезопасной газовой среды;

в самолетостроении азотом накачивают шины шасси.

Все вышесказанное относится к применению чистого азота, но не стоит забывать, что этот элемент является исходным сырьем для производства массы всевозможных соединений:

— аммиак. Чрезвычайно востребованное вещество с содержанием азота. Аммиак идет на производство удобрений, полимеров, соды, азотной кислоты. Сам по себе применяется в медицине, изготовлении холодильной техники;

— азотные удобрения;

взрывчатые вещества;

— красители и т.д.


Азот – не только один из наиболее распространенных химических элементов, но и очень нужный компонент, применяемый во многих отраслях человеческой деятельности.

ОПРЕДЕЛЕНИЕ

Азот - седьмой элемент Периодической таблицы. Обозначение - N от латинского «nitrogenium». Расположен во втором периоде, VА группе. Относится к неметаллам. Заряд ядра равен 7.

Большая часть азота находится в свободном состоянии. Свободный азот является главной составной частью воздуха, который содержит 78,2% (об.) азота. Неорганические соединения азота не встречаются в природе в больших количествах, если не считать натриевую селитру NaNO 3 , образующую мощные пласты на побережье Тихого океана в Чили. Почва содержит незначительные количества азота, преимущественно в виде солей азотной кислоты. Но в виде сложных органических соединений - белков - азот входит в состав всех живых организмов.

В виде простого вещества азот - это бесцветный газ, не имеющий запаха и весьма мало растворимый в воде. Он немного легче воздуха: масса 1 л азота равна 1,25 г.

Атомная и молекулярная масса азота

Относительной атомной массой элемента называют отношение массы атома данного элемента к 1/12 массы атома углерода. Относительная атомная масса безразмерна и обозначается A r (индекс «r» — начальная буква английского слова relative, что в переводе означает «относительный»). Относительная атомная масса атомарного азота равна 14,0064 а.е.м.

Массы молекул, также как массы атомов выражаются в атомных единицах массы. Молекулярной массой вещества называется масса молекулы, выраженная в атомных единицах массы. Относительной молекулярной массой вещества называют отношение массы молекулы данного вещества к 1/12 массы атома углерода, масса которого равна 12 а.е.м. Известно, что молекула азота двухатомна - N 2 . Относительная молекулярная масса молекулы азота будет равна:

M r (N 2) = 14,0064× 2 ≈ 28.

Изотопы азота

В природе азот существует в виде двух стабильных изотопов 14 N (99,635%) и 15 N (0,365%). Их массовые числа равны 14 и 15 соответственно. Ядро атома изотопа азота 14 N содержит семь протонов и семь нейтронов, а изотопа 15 N - такое же количество протонов и шесть нейтронов.

Существует четырнадцать искусственных изотопов азота с массовыми числами от 10-ти до 13-ти и от 16-ти до 25-ти, из которых наиболее стабильным является изотоп 13 Nс периодом полураспада равным 10 минут.

Ионы азота

На внешнем энергетическом уровне атома азота имеется пять электронов, которые являются валентными:

1s 2 2s 2 2p 3 .

Схема строения атома азота представлена ниже:

В результате химического взаимодействия азот может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

N 0 -5e → N 2+ ;

N 0 -4e → N 4+ ;

N 0 -3e → N 3+ ;

N 0 -2e → N 2+ ;

N 0 -1e → N 1+ ;

N 0 +1e → N 1- ;

N 0 +2e → N 2- ;

N 0 +3e → N 3- .

Молекула и атом азота

Молекула азота состоит из двух атомов - N 2 . Приведем некоторые свойства, характеризующие атом и молекулу азота:

Примеры решения задач

ПРИМЕР 1

Задание Для образования хлорида аммония было взято 11,2 л (н.у.) газообразного аммиака и 11,4 л (н.у.) хлороводорода. Какова масса образовавшегося продукта реакции?
Решение Запишем уравнение реакции получения хлорида аммония из аммиака и хлороводорода:

NH 3 + HCl = NH 4 Cl.

Найдем количество молей исходных веществ:

n(NH 3) = V(NH 3) / V m ;

n(NH 3) = 11,2 / 22,4 = 0,5 моль.

n(HCl) = V(NH 3) / V m ;

n(HCl) = 11,4 / 22,4 = 0,51 моль.

n(NH 3)

n(NH 4 Cl) = n(NH 3) = 0,5 моль.

Тогда, масса хлорида аммония будет равна:

M(NH 4 Cl) = 14 + 4×1 + 35,5 = 53,5г/моль.

m(NH 4 Cl) = n(NH 4 Cl) × M(NH 4 Cl);

m(NH 4 Cl) = 0,5×53,5 = 26,75 г.

Ответ 26,75 г

ПРИМЕР 2

Задание 10,7 г хлорида аммония смешали с 6 г гидроксида кальция и смесь нагрели. Какой газ и сколько его по массе и объему выделилось (н.у.)?
Решение Запишем уравнение реакции взаимодействия хлорида аммония с гидроксидом кальция:

2NH 4 Cl + Ca(OH) 2 = CaCl 2 + 2NH 3 - + 2H 2 O.

Определим, какое из двух реагирующих веществ находится в избытке. Для этого рассчитаем их количество молей:

M(NH 4 Cl) = A r (N) + 4×A r (H) + A r (Cl);

M(NH 4 Cl) = 14 + 4×1 + 35,5 = 53,5 г/моль.

n(NH 4 Cl) = m (NH 4 Cl) / M(NH 4 Cl);

n(NH 4 Cl) = 10,7 / 53,5 = 0,1 моль.

M(Ca(OH) 2) = A r (Ca) + 2×A r (H) + 2×A r (O);

M(Ca(OH) 2) = 40 + 2×1 + 2×16 = 42 + 32 = 74 г/моль.

n(Ca(OH) 2) = m (Ca(OH) 2) / M(Ca(OH) 2);

n(Ca(OH) 2) = 6 / 74 = 0,08 моль.

n(Ca(OH) 2)

n(NH 3) = 2×n(Ca(OH) 2) = 2×0,08 = 0,16 моль.

Тогда, масса аммиака будет равна:

M(NH 3) = A r (N) + 3×A r (H) = 14 + 3×1 = 17 г/моль.

m(NH 3) = n(NH 3) ×M(NH 3) = 0,16 × 17 = 2,72 г.

Объем аммиака равен:

V(NH 3) = n(NH 3) ×V m ;

V(NH 3) = 0,16× 22,4 = 3,584 л.

Ответ В результате реакции образовался аммиак объемом 3,584 л и массой 2,72 г.

Азот - это всем известный химический элемент, который обозначается буквой N. Этот элемент, пожалуй, основа неорганической химии, его начинают подробно изучать еще в 8 классе. В данной статье мы рассмотрим данный химический элемент, а также его свойства и типы.

История открытия химического элемента

Азот - это элемент, который впервые был представлен знаменитым французским химиком Антуаном Лавуазье. Но за звание первооткрывателя азота борются многие ученые, среди них и Генри Кавендиш, Карл Шееле, Даниэль Резерфорд.

В результате опыта первым выделил химический элемент, но так и не понял, что он получил простое вещество. О своем опыте он сообщил который тоже проделывал ряд исследований. Вероятно, Пристли тоже удалось выделить этот элемент, но ученый не смог понять, что именно он получил, поэтому не заслужил звание первооткрывателя. Карл Шееле одновременно с ними проводил те же исследования, но не пришел к нужному выводу.

В том же году Даниэль Резерфорд сумел не только получить азот, но и описать его, опубликовать диссертацию и указать основные химические свойства элемента. Но даже Резерфорд так до конца и не понял, что он получил. Однако именно его считают первооткрывателем, потому что он был ближе всех к разгадке.

Происхождение названия азота

С греческого "азот" переводится как "безжизненный". Именно Лавуазье трудился над правилами номенклатуры и решил так назвать элемент. В 18 веке про этот элемент было известно лишь то, что он не поддерживает ни ни дыхания. Поэтому данное название приняли.

В латинском языке азот называется "нитрогениум", что в перевод означает "рождающий селитру". Из латинского языка и появилось обозначение азота - буква N. Но само название во многих странах не прижилось.

Распространенность элемента

Азот - это, пожалуй, один из самых распространенных элементов на нашей планете, он занимает четвертое место по распространенности. Элемент также найден в солнечной атмосфере, на планетах Уран и Нептун. Из азота состоят атмосферы Титана, Плутона и Тритона. Помимо этого, атмосфера Земли состоит на 78-79 процентов из этого химического элемента.

Азот играет важную биологическую роль, ведь он необходим для существования растений и животных. Даже тело человека содержит от 2 до 3 процентов этого химического элемента. Входит в состав хлорофилла, аминокислот, белков, нуклеиновых кислот.

Жидкий азот

Жидкий азот - это бесцветная прозрачная жидкость, является одним из агрегатных состояний химического азот широко используется в промышленности, строительстве и медицине. Он используется при заморозке органических материалов, охлаждения техники, а в медицине для удаления бородавок (эстетическая медицина).

Жидкий азот не токсичен, а также не взрывоопасен.

Молекулярный азот

Молекулярный азот - это элемент, который содержится в атмосфере нашей планеты и образует большую ее часть. Формула молекулярного азота - N 2 . Такой азот вступает в реакции с другими химическими элементами или веществами только при очень высокой температуре.

Физические свойства

При нормальных условиях химический элемент азот - который не имеет запаха, цвета, а также практически не растворим в воде. Азот жидкий по своей консистенции напоминает воду, такой же прозрачный и бесцветный. У азота есть еще одно агрегатное состояние, при температуре ниже -210 градусов он превращается в твердое тело, образует много больших белоснежных кристаллов. Поглощает кислород из воздуха.

Химические свойства

Азот относится к группе неметаллов и перенимает свойства у других химических элементов из этой группы. Как правило, неметаллы не являются хорошими проводниками электричества. Азот образует различные оксиды, например NO (моноокисид). NO или окись азота является мышечным релаксантом (вещество, которое значительно расслабляет мускулатуру и при этом не оказывает никакого вреда и иных влияний на организм человека). Оксиды, где содержится больше атомов азота, например N 2 O - это веселящий газ, чуть-чуть сладковатый на вкус, который используется в медицине как анестезирующее средство. Однако уже оксид NO 2 не имеет никакого отношения к первым двум, ведь это довольно вредный выхлопной газ, который содержится в выхлопах автомобилей и серьезно загрязняет атмосферу.

Азотная кислота, которую образуют атомы водорода, азота и три атома кислорода, является сильной кислотой. Ее широко используют в производстве удобрений, в ювелирном деле, органическом синтезе, военной промышленности (производство взрывчатых веществ, и синтеза отравляющих веществ), производстве красителей, лекарств и др. Азотная кислота очень вредна для организма человека, на коже оставляет язвы и химические ожоги.

Люди ошибочно полагают, что углекислый газ - это азот. На самом деле, по своим химическим свойствам элемент реагирует лишь с небольшим количеством элементов при нормальных условиях. А углекислый газ - это оксид углерода.

Применение химического элемента

Азот в жидком состоянии применяют в медицине для лечения холодом (криотерапии), а также в кулинарии как хладагент.

Этот элемент также нашел широкое применение в промышленности. Азот - это газ, который взрыво- и пожаробезопасен. Помимо этого, он препятствует гниению и окислению. Сейчас азот используют в шахтах с целью создания взрывобезопасной среды. Газообразный азот применяют в нефтехимии.

В химической промышленности без азота обойтись очень нелегко. Его используют для синтеза различных веществ и соединений, например некоторых удобрений, аммиака, взрывчатых веществ, красителей. Сейчас большое количество азота используют для синтеза аммиака.

В пищевой промышленности это вещество зарегистрировано как пищевая добавка.

Смесь или чистое вещество?

Даже ученые первой половины 18 века, которым удалось выделить химический элемент, думали, что азот - это смесь. Но существует большая разница между этими понятиями.

Имеет целый комплекс постоянных свойств, таких как состав, физические и химические свойства. А смесь - это соединение, в которое входит два или больше химических элемента.

Сейчас мы знаем, что азот - это чистое вещество, так как он является химическим элементом.

При изучении химии очень важно понять, что азот является основой всей химии. Он образует различные соединения, которые всем нам встречаются, это и веселящий газ, и бурый газ, и аммиак, и азотная кислота. Недаром химия в школе начинается именно с изучения такого химического элемента, как азот.


(лат. Nitrogenum) химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса - 14,0067. Бесцветный газ, без вкуса и запаха. Один из самых распространенных элементов, главная составляющая часть атмосферы Земли (4*10^15 т). Слово «азот», предложенное французским химиком А. Лавуазье в конце XVIII в., греческого происхождения. «Азот» означает «безжизненный» (приставка «а» - отрицание. «зоэ» - жизнь). Именно так считал Лавуазье. Именно так считали его современники, в том числе шотландский химик и врач Д. Резерфорд, выделивший азот из воздуха чуть раньше своих известных коллег - шведа К. Шееле, англичан Д. Пристли и Г. Кавендиша. Резерфорд в 1772г. опубликовал диссертацию о так называемом «мафическом», т.е. неполноценном, воздухе, не поддерживающем горения и дыхания.
Название « азот » для нового газа казалось достаточно точным. Но так ли это? Азот действительно, в отличие от кислорода, не поддерживает дыхания и горения. Однако дышать чистым кислородом постоянно человек не может. Даже больным дают чистый кислород лишь непродолжительное время. На всех орбитальных станциях, на космических кораблях «Союз» и «Восток» космонавты дышали привычным атмосферным воздухом, почти на 4/5 состоящим из азота. Очевидно, он не просто нейтральный разбавитель кислорода. Именно смесь азота с кислородом наиболее приемлема для дыхания большинства обитателей нашей планеты.


А разве справедливо называть безжизненным этот элемент? Чем подкармливают растения, внося минеральные удобрения? Прежде всего, соединениями азота, калия и фосфора. Азот входит в состав бесчисленного множества органических соединений, в том числе, таких жизненно важных, как белки и аминокислоты.
Для человечества чрезвычайно полезна относительная инертность этого газа. Будь он более склонен к химическим реакциям, атмосфера Земли не могла бы существовать в том виде, в каком она существует. Сильный окислитель кислород вступил бы с азотом в реакцию, и образовались бы ядовитые оксиды азота. Но если бы азот был действительно инертным газом, таким, например, как гелий, то тогда ни химические производства, ни всемогущие микроорганизмы не смогли бы связать азот атмосферы и удовлетворить потребность всего живого в связанном азоте. Не было бы аммиака, азотной кислоты, необходимой для производства множества веществ, не было бы важнейших удобрений. Не было бы и жизни на Земле, ведь азот входит в состав всех организмов. На долю азота приходится немалая часть от массы человеческого организма.
Элементарный, не связанный азот применяется достаточно широко. Это самый дешевый из газов, химически инертных в обычных условиях, поэтому в тех процессах металлургии и большой химии, где надо защищать активное соединение или расплавленный металл от взаимодействия с кислородом воздуха, создают чисто азотные защитные атмосферы. Под защитой азота хранят в лабораториях легко окисляющиеся вещества. В металлургии азотом насыщают поверхности некоторых металлов и сплавов, чтобы придать им большую твердость и износоустойчивость. Широко известно, например, азотирование стали и титановых сплавов.


Жидкий азот (температуры плавления и кипения азота: - 210°С и - 196°С) используют в холодильных установках. Малая химическая активность азота объясняется, прежде всего, строением его молекулы. Как и у большинства газов (кроме инертных), молекула азота состоит из двух атомов. В образовании связи между ними участвуют по 3 валентных электрона внешней оболочки каждого атома. Чтобы разрушить молекулу азота, необходимо затратить очень большую энергию - 954,6 кДж/моль. Без разрушения молекулы азот в химическую связь не вступит. При обычных условиях с ним способен вступить в реакцию только литий, давая нитрид Li3N. Намного активнее атомарный азот. При обычной температуре он вступает в реакции с серой, фосфором, мышьяком и некоторыми металлами, например с ртутью. Но получить азот в виде отдельных атомов сложно. Даже при 3000 С не наблюдается заметного разложения молекул азота на атомы.
Соединения азота имеют громадное значение и для науки, и для многих отраслей промышленности. Ради получения связанного азота человечество идет на огромные энергетические затраты.
Основным способом связывания азота в промышленных условиях остается синтез аммиака NH3 (см. Синтез химический). Аммиак один из самых массовых продуктов химической промышленности, мировое производство его - более 70 млн. т. в год. Процесс идет при температуре 400-600° С и давлении в миллионы паскалей (сотни ат) в присутствии катализаторов, например губчатого железа с добавками оксида калия, оксида алюминия. Сам аммиак используется ограниченно и обычно в виде водных растворов (аммиачная вода как жидкое удобрение, нашатырный спирт - в медицине). Но аммиак, в отличие от атмосферного азота, довольно легко вступает в реакции присоединения и замещения. Да и окисляется он легче, чем азот. Поэтому аммиак и стал исходным продуктом для получения большинства азотсодержащих веществ.
Прямое окисление азота кислородом требует очень высоких температур (4000С°) или других очень активных методов воздействия на прочные молекулы азота электрического разряда, ионизирующего излучения. Известны пять оксидов азота (II) N3O оксид азота (III), N2O3 оксид азота (III), N2O3 оксид азота (III), NО2 оксид азота (IV), N2O5, оксид азота (V).
В промышленности широко применяется азотная кислота HNO3, которая одновременно является и сильной кислотой, и активным окислителем. Она способна растворять все металлы, кроме золота и платины. Химикам азотная кислота известна, по крайней мере, с XIII в., ею пользовались древние алхимики. Азотная кислота чрезвычайно широко используется для получения нитросоединений. Это главный нитрующий агент, с помощью которого в состав органических соединений вводят нитргруппы NO2. А когда три таких группы появятся, к примеру, в молекуле толуола С6Н5СН3, то обычный органический растворитель превращается во взрывчатое вещество тринитротолуол, тротил, или тол. Глицерин после нитрования превращается в опасное взрывчатое вещество нитроглицерин.
Не менее важна азотная кислота в производстве минеральных удобрений. Соли азотной кислоты-нитраты, прежде всего нитрат натрия, калия и аммония, используются главным образом как азотные удобрения. Но, как установил академик Д. Н. Прянишников, растение, если ему предоставлена возможность выбора, предпочитает аммиачный азот нитратному.
Соли другой кислоты азота - слабой азотистой HNO2 - называются нитритами и также довольно широко используются в химической и других отраслях промышленности. Нитрит натрия, например, в небольших дозах добавляют в колбасы и ветчину, чтобы сохранить присущий мясу розово-красный цвет.
Получать соединения азота с минимальными энергетическими затратами при небольших температурах и давлениях ученые стремятся уже давно. Идею о том, что некоторые микроорганизмы могут связывать азот воздуха, первым высказал русский физик П. Коссович в конце XIX в. А выделил из почвы первую азотфиксирующую бактерию другой наш соотечественник биохимик С. Н, Виноградский в 1890-е гг. Но лишь в последнее время стал более или менее ясен механизм связывания азота бактериями. Бактерии усваивают азот, превращая его в аммиак, который затем очень быстро превращается в аминокислоты и белки. Процесс идет при участии ферментов.
В лабораториях нескольких стран получены комплексные соединения, способные связывать атмосферный азот. Главная роль при этом отводится комплексам, содержащим молибден, железо и магний. В основном уже изучен и разработан механизм этого процесса.

Азот — это бесцветный газ, один из самых распространенных химических элементов на нашей планете, в таблице Менделеева обозначается символом N от лат. Nitrogenum, что означает безжизненный (azoos по-гречески). Еще в школе мы узнаем, что газообразный азот составляет 78 процентов земной атмосферы. Если положить его на одну чашу воображаемых весов, то на другую их чашу пришлось бы для равновесия взгромоздить 4 х 10 15 тонн гирь.

Азот в виде его соединений играет колоссальную роль в жизни человечества. Земледельцы ежегодно вносят в почву огромное количество азотных удобрений. Содержащие азот соединения находят всевозрастающий спрос в промышленности - это красители, различные виды топлива, полимеры. Казалось бы, потребность легко удовлетворить за счет безбрежного океана атмосферы. Однако каждому школьнику хорошо известна инертность этого вещества: двухатомные молекулы, из которых состоит газообразный азот, при обычных условиях не реагируют практически ни с какими другими веществами.

Вместе с тем давно известно обстоятельство, которое заставляет химиков упорно искать новые пути. Это впервые установленная русским ученым С. Виноградским еще в 90-х годах XIX столетия биологическая фиксация азота некоторыми микроорганизмами, а также водорослями. Выходит, химическая инертность не мешает усвоению азота живыми организмами? Ведь они не могут при этом пользоваться высокими температурами и давлением. Значит, среди ферментов - биологических катализаторов, содержащихся в теле бактерий, - есть такие, которые позволяют превратить азот в белки при обычных температурах и давлениях в присутствии воды и кислорода.

Поразительным оказалось то, что активные к азоту системы не были уникальными. Со многими из них химики работали раньше и даже применяли в промышленных процессах.

Вслед за этим было сделано и другое открытие, рушившее психологический барьер в отношении азота. Ученые получили в итоге своеобразный комплекс рутения и азота: молекула газа в нем была прочно привязана к атому металла. Такие комплексы других молекул с соединениями металлов были известны ранее и широко изучались. Однако никто не ожидал, что с ионом металла могла так прочно связаться молекула «инертного» азота.

Ученым не удалось выяснить условий связывания свободного азота. Однако было установлено, что и свободный азот способен образовывать комплексы с соединениями рутения, причем иногда в присутствии воды и кислорода . Затем в разных странах мира начались интенсивные поиски, и выяснилось, что азот связывается в комплексы с рядом различных металлов.

Здесь оставалось снова только удивляться, почему ни комплексы азота, ни его реакции в растворах не были открыты ранее.

Тем временем ученые продвинулись дальше. Во-первых, удалось показать, что процесс можно ускорить - с помощью катализаторов связывать большие количества молекулярного азота. Во-вторых, открыли, что под действием соединений тех же переходных металлов свободный азот способен вступать в реакции с некоторыми органическими соединениями. Так был найден перспективный путь получения ценных химических веществ из молекулярного азота.

Теперь предстояло связать воедино два наметившихся направления - химию комплексов молекулярного азота и изучение реакции его восстановления. Ведь именно комплексообразование (как это было ранее найдено для других молекул) в принципе должно было «активировать» инертные молекулы газа. Однако в известных комплексах он оставался инертным. Длительная теоретическая и экспериментальная работа дала ответ на вопрос, какими должны быть комплексы, чтобы азот в них был химически активным. Естественно, здесь невозможно дать детальное описание разработанной теории. Но из нее, в частности, следует, что активные по отношению к дальнейшим реакциям комплексы могут наблюдаться не при обычных, а при пониженных температурах. Ученые стали выделять из растворов целый набор комплексов, в которых молекула азота активирована к дальнейшим реакциям.

Ободренные успехами исследователи попытались связать азот непосредственно в водном растворе, используя сравнительно слабые восстановители, - так, как это делают бактерии и водоросли. В поисках недостающих данных пришлось прибегнуть к помощи живой природы.

Уже было известно, что в ферментативных системах бактерий молекула азота активирует молибден и этот металл нельзя заменить никаким другим, кроме ванадия. Исследователи сосредоточили свое внимание на соединениях именно этих металлов, считая, что природа не случайно остановила на них свой выбор.

В 1970 году наконец получили результат, к которому исследователи стремились многие годы. Удалось открыть системы, которые фиксируют азот в присутствии соединений молибдена и ванадия в водных и водно-спиртовых средах. Основным конечным пунктом реакции, как оказалось, был почти исключительно гидразин. В несколько измененных условиях удавалось наблюдать и преимущественное образование аммиака.

Итак, еще одним парадоксом в химии стало меньше. Опровергнуто представление об инертности азота, открыты новые пути превращения огромных атмосферных «залежей» этого газа в продукты, нужные человеку.