Что такое мост эйнштейна розена. Кротовые норы в космосе

Оно искривлено, а гравитация, знакомая всем нам, является проявлением этого свойства. Материя искривляет, "прогибает" пространство вокруг себя, и тем больше, чем она плотнее. Космос, пространство и время - все это очень интересные темы. Прочитав эту статью, вы наверняка узнаете что-то новое о них.

Идея кривизны

Множество других теорий тяготения, которых существует сегодня целые сотни, в деталях отличается от ОТО. Однако все эти астрономические гипотезы сохраняют основное - идею кривизны. Если пространство кривое, то можно предположить, что оно могло принять, например, форму трубы, соединяющей области, которые разделены множеством световых лет. А возможно, даже эпохи, далекие друг от друга. Ведь мы ведем речь не о пространстве, привычном нам, а о пространстве-времени, когда рассматриваем космос. Дыра в нем может появиться лишь при определенных условиях. Предлагаем вам поближе познакомиться с таким интересным явлением, как кротовые норы.

Первые идеи о кротовых норах

Далекий космос и его загадки манят к себе. Мысли об искривлении появились сразу же после того, как была опубликована ОТО. Л. Фламм, австрийский физик, уже в 1916 году говорил о том, что пространственная геометрия может существовать в виде некоей норы, которая соединяет два мира. Математик Н. Розен и А. Эйнштейн в 1935 году заметили, что простейшие решения уравнений в рамках ОТО, описывающие изолированные электрически заряженные или нейтральные источники, создающие обладают пространственной структурой "моста". То есть они соединяют две вселенные, два почти плоских и одинаковых пространства-времени.

Позднее эти пространственные структуры стали именоваться "кротовыми норами", что является довольно вольным переводом с английского языка слова wormhole. Более близкий его перевод - "червоточина" (в космосе). Розен и Эйнштейн даже не исключали возможности использования этих "мостов" для описания с их помощью элементарных частиц. Действительно, в этом случае частица является сугубо пространственным образованием. Следовательно, необходимости моделировать источник заряда или массы специально не появится. А удаленный внешний наблюдатель в случае, если кротовая нора имеет микроскопические размеры, видит лишь точечный источник с зарядом и массой при нахождении в одном из этих пространств.

"Мосты" Эйнштейна-Розена

С одной стороны в нору входят электрические силовые линии, а с другой они выходят, не заканчиваясь и не начинаясь нигде. Дж. Уилер, американский физик, по этому поводу сказал, что получается "заряд без заряда" и "масса без массы". Вовсе не обязательно в этом случае считать, что мост служит для соединения двух разных вселенных. Не менее уместным будет и предположение о том, что у кротовой норы оба "устья" выходят в одинаковую вселенную, однако в разные времена и в разных ее точках. Получается что-то, напоминающее пустотелую "ручку", если ее пришить к практически плоскому привычному миру. Силовые линии входят в устье, которое можно понимать как отрицательный заряд (допустим, электрон). Устье, из которого они выходят, имеет положительный заряд (позитрон). Что же касается масс, они с обеих сторон будут одинаковыми.

Условия образования "мостов" Эйнштейна-Розена

Эта картина, при всей своей привлекательности, не получила распространение в физике элементарных частиц, на что было множество причин. Нелегко приписать "мостам" Эйнштейна-Розена квантовые свойства, без которых в микромире не обойтись. Такой "мост" и вовсе не образуется при известных значениях зарядов и масс частиц (протонов или электронов). "Электрическое" решение вместо этого предсказывает "голую" сингулярность, то есть точку, где электрическое поле и кривизна пространства делаются бесконечными. В таких точках понятие пространства-времени даже в случае искривления теряет смысл, так как невозможно решать уравнения, имеющие бесконечное множество слагаемых.

Когда не работает ОТО?

Сама по себе ОТО определенно заявляет, когда именно она прекращает работать. На горловине, в наиболее узком месте "моста", наблюдается нарушение гладкости соединения. И оно, следует сказать, достаточно нетривиально. С позиции удаленного наблюдателя на этой горловине останавливается время. То, что Розен и Эйнштейн считали горловиной, в настоящее время определяется как горизонт событий черной дыры (заряженной или нейтральной). Лучи или частицы с разных сторон "моста" попадают на различные "участки" горизонта. А между левой и правой его частями, условно говоря, находится нестатическая область. Для того чтобы пройти область, нельзя не преодолеть ее.

Невозможность пройти через черную дыру

Космический корабль, который приближается к горизонту довольно крупной относительно него черной дыры, как будто застывает навеки. Все реже и реже доходят сигналы от него… Напротив, горизонт по корабельным часам достигается за конечное время. Когда корабль (луч света или частица) минует его, он вскоре упрется в сингулярность. Это место, где кривизна делается бесконечной. В сингулярности (еще на подходе к ней) протяженное тело неизбежно будет разорвано и раздавлено. Такова реальность устройства черной дыры.

Дальнейшие исследования

В 1916-17 гг. были получены решения Райснера-Нордстрема и Шварцшильда. В них сферически описываются симметричные электрически заряженные и нейтральные черные дыры. Однако физики смогли до конца разобраться в непростой геометрии данных пространств только на рубеже 1950-60-х годов. Именно тогда Д. А. Уилер, известный благодаря своим работам в теории гравитации и ядерной физике, предложил термины "кротовая нора" и "черная дыра". Выяснилось, что в пространствах Райснера-Нордстрема и Шварцшильда действительно существуют кротовые норы в космосе. Они полностью не видны удаленному наблюдателю, как и черные дыры. И, подобно им, кротовые норы в космосе вечны. А вот если путешественник проникнет за горизонт, они схлопываются настолько быстро, что через них не сможет пролететь ни луч света, ни массивная частица, а не то что корабль. Чтобы пролететь к другому устью, минуя сингулярность, нужно двигаться быстрее света. В настоящее время физики считают, что сверхновые скорости перемещения энергии и материи принципиально невозможны.

Шварцшильда и Райснера-Нордстрема

Черная дыра Шварцшильда может считаться непроходимой кротовой норой. Что касается черной дыры Райснера-Нордстрема, она устроена несколько сложнее, однако также непроходима. Тем не менее придумать и описать четырехмерные кротовые норы в космосе, которые можно было бы пройти, не так уж сложно. Стоит лишь подобрать необходимый вид метрики. Метрический тензор, или метрика, - набор величин, используя который, можно вычислить четырехмерные интервалы, существующие между точками-событиями. Этот набор величин полностью характеризует также и поле тяготения, и геометрию пространства-времени. Геометрически проходимые кротовые норы в космосе даже проще, нежели черные дыры. В них нет горизонтов, которые ведут к катаклизмам с ходом времени. В различных точках время может идти а разном темпе, однако оно не должно при этом бесконечно останавливаться или ускоряться.

Два направления исследования кротовых нор

Природа поставила барьер на пути появления кротовых нор. Однако человек устроен так, что если находится препятствие, всегда будут желающие его преодолеть. И ученые не исключение. Труды теоретиков, которые занимаются исследованием кротовых нор, условно можно разделить на два направления, дополняющих друг друга. Первое занимается рассмотрением их следствий, заранее предполагая то, что кротовые норы действительно существуют. Представители второго направления пытаются понять, из чего и как они могут появиться, какие условия необходимы для их возникновения. Работ этого направления больше, чем первого и, пожалуй, они более интересны. К данному направлению можно отнести поиск моделей кротовых нор, а также исследование их свойств.

Достижения российских физиков

Как выяснилось, свойства материи, являющейся материалом для строительства кротовых нор, могут реализоваться за счет поляризации вакуума квантовых полей. Российские физики Сергей Сушков и Аркадий Попов совместно с испанским исследователем Давидом Хохбергом, а также Сергей Красников недавно пришли к этому выводу. Вакуум в этом случае не является пустотой. Это квантовое состояние, характеризующееся наименьшей энергией, то есть поле, в котором отсутствуют реальные частицы. В этом поле постоянно возникают пары частиц "виртуальных", исчезающие до того, как их обнаруживают приборы, однако оставляющие свой след в виде тензора энергии, то есть импульса, характеризующегося необычными свойствами. Несмотря на то что квантовые свойства материи в основном проявляются в микромире, кротовые норы, рождаемые ими, при некоторых условиях способны достигать значительных размеров. Одна из статей Красникова, кстати, называется "Угроза кротовых нор".

Вопрос философии

Если кротовые норы когда-нибудь все-таки удастся построить или обнаружить, область философии, связанная с интерпретацией науки, столкнется с новыми задачами и, нужно сказать, весьма непростыми. При всей, казалось бы, абсурдности временных петель и нелегких проблемах, касающихся причинности, данная область науки, вероятно, когда-нибудь с этим разберется. Так же, как разобрались в свое время с проблемами квантовой механики и созданной Космос, пространство и время - все эти вопросы во все века интересовали людей и, видимо, будут интересовать нас всегда. Познать их полностью едва ли удастся. Изучение космоса вряд ли когда-либо будет завершено.

Хотя Эйнштейн считал, что черные дыры - явление слишком невероятное и в природе существовать не могут, позднее, такова ирония судьбы, он показал, что они еще более причудливы, чем кто-либо мог предположить. Эйнштейн объяснил возможность существования пространственно-временных «порталов» в недрах черных дыр. Физики называют эти порталы червоточинами, поскольку, подобно червю, вгрызающемуся в землю, они создают более короткий альтернативный путь между двумя точками. Эти порталы также называют иногда порталами или «вратами» в другие измерения. Как их ни назови, когда-нибудь они могут стать средством путешествий между различными измерениями, но это случай крайний.

Первым, кто популяризовал идею порталов, стал Чарльз Доджсон, который писал под псевдонимом Льюис Кэрролл. В «Алисе в Зазеркалье» он представил портал в виде зеркала, которое соединяло пригород Оксфорда и Страну Чудес. Поскольку Доджсон был математиком и преподавал в Оксфорде, ему было известно об этих многосвязных пространствах. По определению, многосвязное пространство таково, что лассо в нем нельзя стянуть до размеров точки. Обычно любую петлю можно безо всякого труда стянуть в точку. Но если мы рассмотрим, например, пончик, вокруг которого намотано лассо, то увидим, что лассо будет стягивать этот пончик. Когда мы начнем медленно затягивать петлю, то увидим, что ее нельзя сжать до размеров точки; в лучшем случае, ее можно стянуть до окружности сжатого пончика, то есть до окружности «дырки».

Математики наслаждались тем фактом, что им удалось обнаружить объект, который был совершенно бесполезен при описании пространства. Но в 1935 году Эйнштейн и его студент Натан Розен представили физическому миру теорию порталов. Они попытались использовать решение проблемы черной дыры как модель для элементарных частиц. Самому Эйнштейну никогда не нравилась восходящая ко временам Ньютона теория, что гравитация частицы стремится к бесконечности при приближении к ней. Эйнштейн считал, что эта сингулярность должна быть искоренена, потому что в ней нет никакого смысла.

У Эйнштейна и Розена появилась оригинальная идея представить электрон (который обычно считался крошечной точкой, не имеющей структуры) как черную дыру. Таким образом, можно было использовать общую теорию относительности для объяснения загадок квантового мира в объединенной теории поля. Они начали с решения для стандартной черной дыры, которая напоминает большую вазу с длинным горлышком. Затем они отрезали «горлышко» и соединили его с еще одним частным решением уравнений для черной дыры, то есть с вазой, которая была перевернута вверх дном. По мнению Эйнштейна, эта причудливая, но уравновешенная конфигурация была бы свободна от сингулярности в происхождении черной дыры и могла бы действовать как электрон.

К несчастью, идея Эйнштейна о представлении электрона § качестве черной дыры провалилась. Но сегодня космологи предполагают, что мост Эйнштейна-Розена может служить «вратами» между двумя вселенными. Мы можем свободно передвигаться по Вселенной до тех пор, пока случайно не упадем в черную дыру, где нас немедленно протащит сквозь портал и мы появимся на другой стороне (пройдя сквозь «белую» дыру).

Для Эйнштейна любое решение его уравнений, если оно начиналось с физически вероятной точки отсчета, должно было соотноситься с физически вероятным объектом. Но он не беспокоился о том, кто свалится в черную дыру и попадет в параллельную вселенную. Приливные силы бесконечно возросли бы в центре, и гравитационное поле немедленно разорвало бы на части атомы любого объекта, который имел несчастье свалиться в черную дыру. (Мост Эйнштейна-Розена действительно открывается за доли секунды, но он закрывается настолько быстро, что ни один объект не сможет пройти его с такой скоростью, чтобы достичь другой стороны.) По мнению Эйнштейна, хотя существование порталов и возможно, живое существо никогда не сможет пройти сквозь какой-либо из них и рассказать о своих переживаниях во время этого путешествия.

Мост Эйнштейна-Розена. В центре черной дыры находится «горлышко», которое соединяется с пространством-временем другой вселенной или другой точкой в нашей Вселенной. Хотя путешествие сквозь стационарную черную дыру имело бы фатальные последствия, вращающиеся черные дыры обладают кольцеобразной сингулярностью, которая позволила бы пройти сквозь кольцо и мост Эйнштейна-Розена, хотя это находится еще на стадии предположений.

Релятивистское описание черных дыр фигурирует в работе Карла Шварцшильда. В 1916 г., всего через несколько месяцев после того, как Эйнштейн записал свои знаменитые уравнения, Шварцшильд сумел найти для них точное решение и вычислить гравитационное поле массивной стационарной: звезды.

Решение Шварцшильда имело несколько интересных особенностей. Во-первых, вокруг черной дыры находится «точка невозврата». Любой объект, приблизившийся на расстояние, меньшее, чем этот радиус, неизбежно затянет в черную дыру, спастись ему не удастся. Человек, которому не посчастливится оказаться в пределах радиуса Шварцшильда, будет захвачен черной дырой и раздавлен насмерть. В настоящее время это расстояние от черной дыры называется радиусом Шварцшильда, или горизонтом событий (самой удаленной видимой точкой).

Во-вторых, каждый, кто окажется в пределах радиуса Шварцшильда, обнаружит «зеркальную вселенную» по «другую сторону» пространства-времени (рис. 10.2). Эйнштейна не беспокоило существование этой причудливой зеркальной Вселенной, потому что сообщение с ней было невозможным. Любой космический зонд, отправленный в центр черной дыры, столкнется с бесконечной искривленностью; иначе говоря, гравитационное поле окажется бесконечным, а любой материальный объект будет уничтожен. Электроны оторвутся от атомов, и даже протоны и нейтроны в ядре разнесет в разные стороны. Кроме того, чтобы проникнуть в другую вселенную, зонду понадобится лететь со скоростью, превышающей скорость света, а это невозможно. Таким образом, хотя зеркальная Вселенная математически необходима для понимания решения Шварцшильда, наблюдать ее физически не удастся никогда.

Рис. 10.2. Мост Эйнштейна-Розена соединяет две разных вселенных. Эйнштейн считал, что любая ракета, очутившаяся на этом мосту, будет уничтожена, значит, сообщение между этими двумя вселенными невозможно. Но более поздние вычисления показали, что путешествия помосту хоть и чрезвычайно трудны, но все-таки возможны.

В итоге известный мост Эйнштейна-Розена, соединяющий две вселенных (мост назван в честь Эйнштейна и его соавтора Натана Розена), считается математической причудой. Этот мост необходим для получения математически последовательной теории черных дыр, однако по мосту Эйнштейна-Розена попасть в зеркальную вселенную невозможно. Мосты Эйнштейна-Розена вскоре обнаружились и в других решениях гравитационных уравнений, таких, как решение Райснера-Нордстрёма для черной дыры с электрическим зарядом… Тем не менее мост Эйнштейна-Розена оставался любопытным, но забытым приложением к теории относительности.



Ситуация начала меняться с появлением труда новозеландского математика Роя Керра, который в 1963 г. нашел еще одно точное решение уравнений Эйнштейна. Керр полагал, что любая коллапсирующая звезда вращается. Как вращающийся фигурист, скорость которого возрастает, когда он прижимает к себе руки, звезда неизбежно будет вращаться быстрее по мере схлопывания. Таким образом, стационарное решение Шварцшильда для черных дыр не было самым физически релевантным решением уравнений Эйнштейна.

Предложенное Керром решение стало сенсацией в вопросах относительности. Астрофизик Субраманьян Чандрасекар однажды сказал:

Самым ошеломляющим событием за всю мою научную жизнь, т. е. более чем за сорок пять лет, стало осознание, что точное решение уравнений общей теории относительности Эйнштейна, открытое новозеландским математиком Роем Керром, дает абсолютно точное отображение бессчетного множества массивных черных дыр, наполняющих вселенную. Этот «трепет перед прекрасным», этот невероятный факт, что открытие, к которому привел поиск красоты в математике, обнаружило ее точную копию в Природе, убеждают меня, что красота - то, на что человеческий разум отзывается на самом глубинном, содержательном уровне .



Однако Керр обнаружил, что массивная вращающаяся звезда не сжимается в точку. Вместо этого вращающаяся звезда сплющивается, пока в конце концов не превращается в кольцо, обладающее примечательными свойствами. Если запустить зонд в черную дыру сбоку, он ударится об это кольцо и будет полностью уничтожен. Искривленность пространства-времени остается бесконечной, если приближаться к кольцу сбоку. Если можно так выразиться, центр все так же окружен «кольцом смерти». Но, если запустить космический зонд в кольцо сверху или снизу, ему придется иметь дело с большой, но конечной искривленностью; иначе говоря, гравитационная сила не будет бесконечной.

Этот весьма неожиданный вывод из решения Керра означает, что любой космический зонд, запущенный во вращающуюся черную дыру вдоль оси ее вращения, может в принципе пережить огромное, но конечное воздействие гравитационных полей в центре и проделать весь путь до зеркальной Вселенной, избежав гибели под воздействием бесконечной искривленности. Мост Эйнштейна-Розена действует как туннель, соединяющий две области пространства-времени; это и есть «червоточина», или «кротовина». Таким образом, черная дыра Керра - ворота в другую вселенную.

А теперь представим, что наша ракета очутилась на мосту Эйнштейна-Розена. Приближаясь к вращающейся черной дыре, она видит кольцеобразную вращающуюся звезду. Поначалу кажется, что ракету, спускающуюся навстречу черной дыре со стороны северного полюса, ждет катастрофическое столкновение. Но по мере приближения к кольцу свет зеркальной Вселенной достигает наших датчиков. Поскольку все электромагнитное излучение, в том числе и от радаров, движется по орбите черной дыры, на экранах наших радаров появляются сигналы, многократно проходящие вокруг черной дыры. Создается эффект, напоминающий зеркальную «комнату смеха», где нас вводят в заблуждение многочисленные отражения со всех сторон. Свет отражается рикошетом от множества зеркал, создавая иллюзию, будто комната полна наших точных копий.


Хотя Эйнштейн считал, что черные дыры — явление слишком невероятное и в природе существовать не могут, позднее, такова ирония судьбы, он показал, что они еще более причудливы, чем кто-либо мог предположить. Эйнштейн объяснил возможность существования пространственно-временных «порталов» в недрах черных дыр. Физики называют эти порталы червоточинами, поскольку, подобно
червю, вгрызающемуся в землю, они создают более короткий альтер нативный путь между двумя точками. Эти порталы также называют иногда порталами или «вратами» в другие измерения. Как их ни назови, когда-нибудь они могут стать средством путешествий между различными измерениями, но это случай крайний.
Первым, кто популяризовал идею порталов, стал Чарльз Доджсон, который писал под псевдонимом Льюис Кэрролл. В «Алисе в Зазеркалье» он представил портал в виде зеркала, которое соединяло пригород Оксфорда и Страну Чудес. Поскольку Доджсон был математиком и преподавал в Оксфорде, ему было известно об этих многосвязных пространствах. По определению, многосвязное пространство таково, что лассо в нем нельзя стянуть до размеров точки.
Обычно любую петлю можно безо всякого труда стянуть в точку. Но если мы рассмотрим, например, пончик, вокруг которого намотано лассо, то увидим, что лассо будет стягивать этот пончик. Когда мы начнем медленно затягивать петлю, то увидим, что ее нельзя сжать до
размеров точки; в лучшем случае, ее можно стянуть до окружности сжатого пончика, то есть до окружности «дырки».
Математики наслаждались тем фактом, что им удалось обнару-
жить объект, который был совершенно бесполезен при описании пространства. Но в 1935 году Эйнштейн и его студент Натан Розен
представили физическому миру теорию порталов. Они попыта-
лись использовать решение проблемы черной дыры как модель для элементарных частиц. Самому Эйнштейну никогда не нравилась восходящая ко временам Ньютона теория, что гравитация частицы стремится к бесконечности при приближении к ней. Эйнштейн считал, что эта сингулярность должна быть искоренена, потому что в ней нет никакого смысла. У Эйнштейна и Розена появилась оригинальная идея представить электрон (который обычно считался крошечной точкой, не имеющей структуры) как черную дыру. Таким образом, можно было использовать общую теорию относительности для объяснения загадок квантового мира в объединенной теории поля. Они начали с решения для стандартной черной дыры, которая напоминает большую вазу с длинным горлышком. Затем они отрезали «горлышко» и соединили его с еще одним частным решением уравнений для черной дыры, то есть с вазой, которая была перевернута вверх дном. По мнению Эйнштейна, эта причудливая, но уравновешенная конфигурация была бы свободна от сингулярности в происхождении черной дыры
и могла бы действовать как электрон. К несчастью, идея Эйнштейна о представлении электрона § каче-
стве черной дыры провалилась. Но сегодня космологи предполагают, что мост Эйнштейна-Розена может служить «вратами» между двумя вселенными. Мы можем свободно передвигаться по Вселенной до тех пор, пока случайно не упадем в черную дыру, где нас немедленно
протащит сквозь портал и мы появимся на другой стороне (пройдя сквозь «белую» дыру).
Для Эйнштейна любое решение его уравнений, если оно начи-
налось с физически вероятной точки отсчета, должно было соотноситься с физически вероятным объектом. Но он не беспокоился о том, кто свалится в черную дыру и попадет в параллельную вселенную. Приливные силы бесконечно возросли бы в центре, и гравитационное поле немедленно разорвало бы на части атомы любого объекта, который имел несчастье свалиться в черную дыру. (Мост Эйнштейна-Розена действительно открывается за доли секунды, но он закрывается настолько быстро, что ни один объект не сможет
пройти его с такой скоростью, чтобы достичь другой стороны.) По мнению Эйнштейна, хотя существование порталов и возможно, живое существо никогда не сможет пройти сквозь какой-либо из них и рассказать о своих переживаниях во время этого путешествия.
Мост Эйнштейна-Розена. В центре черной дыры находится «горлышко », которое соединяется с пространством-временем другой вселенной или другой точкой в нашей Вселенной. Хотя путешествие сквозь стационарную черную дыру имело бы фатальные последствия, вращающиеся черные дыры обладают кольцеобразной сингулярностью, которая позволила бы пройти сквозь кольцо и мост Эйнштейна-Розена, хотя это находится еще на стадии предположений.

Определение 1

Мост Эйнштейна – Розена – это одна из модификаций вакуумного решения уравнений Эйнштейна общей теории относительности.

В 1935 году А. Эйнштейн и Н. Розен опубликовали статью «Проблемы частиц в Общей теории относительности». В этой стать ученые пытались представить математическую модель частицы, как моста. Сутью предлагаемой гипотезы стало то, что частица была представлена в виде «дырки», а не, привычной для нас, точки.

В модели, которую предлагали Эйнштейн и Розен, ученые пытались:

  • предложить принципиально новый взгляд на природу элементарных частиц, которые составляют материю;
  • красиво с точки зрения математики соединить теории гравитации и электромагнетизма (предлагаемое решение подходит для уравнений общей теории относительности (гравитационные уравнения) и для уравнений Максвелла (электромагнитные уравнения));

Геометрическая суть моста Эйнштейна- Розена состоит в том, что существует короткая трубка – перемычка, которая соединяет два параллельных пространственных «листа».

Модифицированное решение Шварцшильда

При рассмотрении решения Шварцшильда вне горизонта (при $\rho2M$) можно провести следующую замену одной «радиальной» координаты ($\rho$) на другую - $u(\rho)$. При этом уравнение связи запишем в виде:

$\frac{1}{2} u^2=\rho-2M >0 (1).$

Трансформация радиальной координаты выполнена так, что при увеличении $\rho$ от $2M$ до бесконечности, то координата $u$ или растет от нуля до бесконечности, или уменьшается от 0 до минус бесконечности.

В этом случае метрика в новых координатах принимает вид:

$ds^2=\frac{u^2}{u^2+4M}dt^2-(u^2+4M)du^2-\frac{1}{4}(u^2+4M)^2(d\theta^2+sin^2\theta d \phi^2)(2).$

Так как метрика (2) получена при преобразовании координат из решения Шварцшильда, то она тоже будет удовлетворять уравнениям общей теории относительности, по крайней мере при $u$ > $0$ и $u$

Метрика (1) является определенной на всей вещественной оси.

Два варианта решения уравнения Шварцшильда при $u$ > $0$ и $u$

Составляющие метрики (2) – это гладкие функции, следовательно, уравнения Эйнштейна удовлетворяются при всех $u$.

При $u=0$ метрика (2) является вырожденной, следовательно, уравнения Эйнштейна потребуют доопределения.

Метрика Эйнштейна – Розена инвариантна относительно преобразований $u \to -u$.

Авторы метрики (2), Эйнштейн и Розен считали, что физической интерпретацией метрики (2) служит точечная частица массы $M$, которая находится в покое центра сферической системы координат $u=0$, при этом пространство-время около этой частицы описывают два листа $u$ $0$, обладающие метрикой (2). При этом следует учесть, что эти листы описывают одну Вселенную.

Современная интерпретация физического смысла моста Эйнштейна – Розена

Рассмотрим перемещение пробных частиц в плоскости экватора ($\theta=\frac{1}{2} \pi$) гиперповерхности $u=0$. Наши частицы движутся в пространстве с тремя измерениями с метрикой:

$ds^2=(1-\frac{2M}{\rho})dt^2-\frac{d \rho^2}{1-\frac{2M}{\rho}}-\rho^2d\phi^2 (3)$

в координатах Шварцшильда.

Для этих пробных частиц пространством служат сечения $t=const$. Получаем двумерное многообразие (поверхность), имеющую метрику:

$dl^2=\frac{d\rho^2}{1-\frac{2M}{\rho}}+\rho^2d\phi^2 (4),$

где $\rho$ и $\phi$ - полярные координаты плоскости Евклида.

Для того чтобы представить поверхность, которую определяет метрика (4) ее вкладывают в Евклидово пространство с тремя измерениями, в котором $\rho$, $\phi$ и $z$ - цилиндрические координаты. Если движение вращения задать при помощи функции $z (\rho)$, в таком случае индуцированная метрика на вложенной поверхности имеет вид:

$dl^2=(1+(\frac{dz}{d\rho})^2)d\rho^2+\rho^2d\phi^2 (5).$

Для реализации совпадения метрик (5) и (4) нужно, чтобы выполнялось равенство:

$(\frac{dz}{d\rho})^2=\frac{1}{\frac{\rho}{2M}-1}(6).$

Уравнение (6) может выполняться только для внешнего решения Шварцшильда ($\rho$ > $2M$). Общее решения можно записать как:

$z=\int{\frac{d\rho}{\sqrt{\frac{\rho}{2M}-1}}}=4M\sqrt{\frac{\rho}{2M}-1}+const (7)$.

Постоянную интегрирования можно приравнять к нулю, так как она отвечает за сдвиг координаты $z$.

Мы видим, что поверхность, имеющую метрику (4) можно представить в трехмерном Евклидовом пространстве заданной уравнением:

$\frac{\rho}{2M}=1+(\frac{z}{4M})^2 (8).$

Уравнение (8) говорит нам о том, что мы имеет параболоид вращения (параболоид Фламма).

В этом вложении верхняя ($z$ > $0$) и нижняя ($z$

Данные сечения являются сшитыми гладко вдоль горловины $z=0$. Горловина соответствует горизонту $\rho_s=2M$.

Параболоид Фламма изометричен глобально сечениям по экватору моста Эйнштейна – Розена.

При использовании координат $u$ и $\phi$ вложения будут заданы уравнениями:

$z^2=4Mu^2$ или $z=\pm \sqrt{4M}u (9).$

Уравнения (9) означают, что параболоид становится парой конусов, а горловина моста стянута в точку.

Физической интерпретацией моста Эйнштейна – Розена построения, проведенные выше, делают следующее:

  • Получены две Вселенные, соответствующие $z$ > $0$ и $z$
  • Обе Вселенные являются асимптотически плоскими, если расстояния велики ($\rho \to \infty$).
  • В «центре» Вселенные имеют склейку ($\rho=2M$ $u=0$).

Описанную выше структуру именуют кротовой норой, так как через нее имеется гипотетическая возможность попасть в другую Вселенную. Отметим, что мост Эйнштена – Розена является непроходимой кротовой норой.

В настоящее время полагают, что существование кротовых нор не доказано, поскольку они не обнаружены.

Ряд ученых отмечают, что поиск «кротовых нор» является одной из самых интересных задач астрономии.

Предполагают, что кротовые норы могут располагаться в центрах Галактик.