Что такое звуковые колебания. Звуковые колебания

Раздел физики, занимающийся звуковыми колебаниями, называется акустикой.

Человеческое ухо устроено так, что оно воспринимает колебания частотой от 20 Гц до 20 кГц как звук. Низкие частоты (звук от большого барабана или органной трубы) воспринимаются ухом как басовые ноты. Свист или писк комара соответствуют высоким частотам. Колебания частотой ниже 20 Гц называются инфразвуком , а частотой свыше 20 кГц - ультразвуком. Такие колебания человек не слышит, но есть животные, которые слышат инфразвуки, исходящие от земной коры перед землетрясением. Услышав их, животные покидают опасную местность.

В музыке акустические частоты соответствуют нотам. Нота «ля» основной октавы (ключ С) соответствует частоте 440 Гц. Нота «ля» следующей октавы соответствует частоте 880 Гц. И так все остальные октавы отличаются по частоте ровно в два раза. Внутри каждой октавы различают 6 тонов или 12 полутонов. Каждый тон имеет частоту в yf2 ~ 1,12 отличающуюся от частоты предыдущего тона, каждый полутон отличается от предыдущего в "$2 . Мы видим, что каждая следующая частота отличается от предыдущей не на сколько-то Гц, а в одинаковое число раз. Такая шкала называется логарифмической, так как равное расстояние между тонами будет именно на логарифмической шкале, где откладывается не сама величина, а ее логарифм.

Если звук соответствует одной частоте v (или со = 2tcv), то его называют гармоническим, или монохроматическим. Чисто гармонические звуки встречаются редко. Почти всегда звук содержит набор частот, т. е. его спектр (см. раздел 8 настоящей главы) сложен. Музыкальные колебания всегда содержат основной тон ссо = 2я/Т, где Т - период, и набор обертонов 2(Оо, Зсо 0 , 4соо и т. д. Набор обертонов с указанием их интенсивностей в музыке называется тембром. У разных музыкальных инструментов, у разных певцов, берущих одну и ту же ноту, тембр разный. Это придает им разную окраску.

Возможна примесь и некратных частот. В классической европейской музыке это считается неблагозвучным. Однако в современной музыке это используется. Даже используется медленное движение каких-либо частот в сторону увеличения или уменьшения (гавайская гитара).

В немузыкальных звуках возможны любые комбинации частот в спектре и их изменение во времени. Спектр таких звуков может быть сплошным (см. раздел 8). Если интенсивности для всех частот приблизительно одинаковы, то такой звук называют «белый шум» (термин взят из оптики, где белый цвет - совокупность всех частот).

Очень сложны звуки человеческой речи. Они имеют сложный спектр, который быстро меняется со временем при произнесении одного звука, слова и всей фразы. Это придает звукам речи различные интонации и акценты. В результате можно по голосу отличить одного человека от другого, даже если они произносят одни и те же слова.

Мир наполнен самыми разнообразными звуками: тиканье часов и гул моторов, шелест листьев и завывание ветра, пение птиц и голоса людей. О том, как рождаются звуки, и что они собой представляют, люди начали догадываться очень давно. Еще древнегреческий философ и ученый-энциклопедист Аристотель, исходя из наблюдений, верно объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. В прошлом году автор работал над проблемой природы звука и выполнил исследовательскую работу: «В мире звуков», в которой были вычислены частоты звука музыкальной гаммы с помощью стакана с водой.

Звук характеризуется величинами: частотой, длиной волны и скоростью. А также его характеризуют амплитуда и громкость. Поэтому мы живём в разнообразном мире звуков и его многообразии оттенков.

В конце предыдущего исследования у меня возник основополагающий вопрос: существуют ли способы определения скорости звука в домашних условиях? Поэтому можно сформулировать проблему: надо найти способы или способ определения скорости звука.

Теоретические основы учения о звуке

Мир звуков

До-ре-ми-фа-соль-ля-си

Гамма звуков. Существуют ли она независимо от уха? Только ли это субъективные ощущения, и тогда мир сам по себе беззвучен, или это отражение реальной действительности в нашем сознании? Если второе, то и без нас мир будет звенеть симфонией звуков.

Еще Пифагору (582-500 гг. до н. э.) легенда приписывает открытие числовых отношений, соответствующих разным музыкальным звукам. Проходя мимо кузницы, где несколько рабочих ковали железо, Пифагор подметил, что звуки находятся в отношении квинты, кварты и октавы. Войдя в кузницу, он убедился, что молот, дававший октаву, сравнительно с наиболее тяжелым молотом имел вес, равный 1/2 последнего, молот, дававший квинту, имел вес, равный 2/3, а кварту - 3/4 тяжелого молота. По возвращении домой Пифагор повесил струны с грузами, пропорциональными 1/2: 2/3: 3/4 на концах и нашел будто бы, что струны при ударе давали те же музыкальные интервалы. Физически легенда не выдерживает критики, наковальня при ударах различными молотами издает свой собственный один и тот же тон, да и законы колебания струн не подтверждают легенды. Но, во всяком случае, легенда говорит о давности учения о гармонии. Заслуги пифагорейцев в области музыки несомненны. Им принадлежит плодотворная мысль об измерении тона звучащей струны путем измерения ее длины. Им был известен прибор «монохорд» - ящик из кедровых досок с одной натянутой струной на крышке. Если ударить по струне, она издает один определенный тон. Если разделить струну на два участка, подперев ее трехгранной колкой посередине, то она будет издавать более высокий тон. Он звучит настолько схоже с основным тоном, что при одновременном звучании они почти сливаются в один тон. Отношение двух тонов в музыке - интервал. При отношении длин струн равным 1/2: 1 интервал называется октавой. Известные Пифагору интервалы квинта и кварта получаются, если колку монохорда сдвинуть так, чтобы она отделяла соответственно 2/3 или 3/4 струны.

Что касается числа семь, то оно связано с каким-то еще более древним и таинственным представлением людей полурелигиозного, полумистического характера. Наиболее, однако, вероятно, что это связано с астрономическим делением лунного месяца на четыре семидневные недели. Это число фигурирует в течение тысячелетий в различных преданиях. Так, мы находим его в древнем папирусе, который за 2000 лет до нашей эры написал египтянин Ахмес. Этот любопытный документ озаглавлен так: «Наставление к приобретению знания всех тайных вещей». Среди прочего находим там таинственную задачу под названием «лестница». В ней говорится о лестнице чисел, представляющих собой степени числа семь: 7, 49, 343, 2401, 16 807. Под каждым числом иероглиф-картина: кошка, мышь, ячмень, мера. Папирус не дает ключа к разгадке этой задачи. Современные истолкователи папируса Ахмеса расшифровывают условие задачи так: У семи лиц есть по семь кошек, каждая кошка съедает по семи мышей, каждая мышь может съесть семь колосьев ячменя, из каждого колоса может вырасти по семь мер зерна. Сколько зерна сберегут кошки? Чем не задача с производственным содержанием, предложенная 40 веков назад?

Семь тонов насчитывает современная европейская музыкальная гамма, но не во все времена и не у всех народов была семитонная гамма. Так, например, в древнем Китае употреблялась гамма из пяти тонов. В целях единства настройки высота этого контрольного тона должна быть строго декларирована международным соглашением. В качестве такого основного тона с 1938 г. принят тон, соответствующий частоте 440 Гц (440 колебаний в секунду). Несколько тонов, звучащих одновременно, образуют музыкальный аккорд. Люди, обладающие так называемым абсолютным слухом, могут в аккорде слышать отдельно взятые тона.

Вам, конечно, известно в основном строение человеческого уха. Напомним его кратко. Ухо состоит из трех частей: 1) наружное ухо, оканчивающееся барабанной перепонкой; 2) среднее ухо, которое при помощи трех слуховых косточек: молоточка, наковальни и стремечка - подает колебания барабанной перепонки внутреннему уху; 3) внутреннее ухо, или лабиринт, состоит из полукружных каналов и улитки. Улитка является звуковоспринимающим аппаратом. Внутреннее ухо заполнено жидкостью (лимфой), приводимой в колебательное движение ударами стремечка по перепонке, затягивающей овальное окошечко в костяной коробочке лабиринта. На перегородке, делящей улитку на две части, по всей ее длине расположены поперечными рядами тончайшие нервные волокна постепенно возрастающей длины.

Мир звуков реален! Но, конечно, не следует думать, что этот мир вызывает у всех совершенно одинаковые ощущения. Спрашивать, воспринимают ли другие люди звуки совершенно так же, как вы, - это ненаучная постановка вопроса.

1. 2. Источники звука. Звуковые колебания

Разнообразен мир окружающих нас звуков - голоса людей и музыка, пение птиц и жужжание пчел, гром во время грозы и шум леса на ветру, звук проезжающих автомобилей, самолетов и т. д.

Общим для всех звуков является то, что порождающие их тела, т. е. источники звука, колеблются.

Укрепленная в тисках упругая металлическая линейка будет издавать звук, если ее свободную часть, длина которой подобрана определенным образом, привести в колебательное движение. В данном случае колебания источника звука очевидны.

Но далеко не всякое колеблющееся тело является источником звука. Например, не издает звука колеблющийся грузик, подвешенный на нити или пружине. Перестанет звучать и металлическая линейка, если переместить ее в тисках вверх и тем самым удлинить свободный конец настолько, чтобы частота его колебаний стала меньше 20 Гц.

Исследования показали, что человеческое ухо способно воспринимать как звук механические колебания тел, происходящие с частотой от 20 Гц до 20000 Гц. Поэтому колебания, частоты которых находятся в этом диапазоне, называются звуковыми.

Механические колебания, частота которых превышает 20 000 Гц, называются ультразвуковыми, а колебания с частотами менее 20 Гц - инфразвуковыми.

Следует отметить, что указанные границы звукового диапазона условны, так как зависят от возраста людей и индивидуальных особенностей их слухового аппарата. Обычно с возрастом верхняя частотная граница воспринимаемых звуков значительно понижается - некоторые пожилые люди могут слышать звуки с частотами, не превышающими 6000 Гц. Дети же, наоборот, могут воспринимать звуки, частота которых несколько больше 20000 Гц.

Колебания, частоты которых больше 20 000 Гц или меньше 20 Гц, слышат некоторые животные.

Мир наполнен самыми разнообразными звуками: тиканье часов и гул моторов, шелест листьев и завывание ветра, пение птиц и голоса людей. О том, как рождаются звуки, и что они собой представляют, люди начали догадываться очень давно. Замечали, к примеру, что звук создают вибрирующие в воздухе тела. Еще древнегреческий философ и ученый-энциклопедист Аристотель, исходя из наблюдений, верно объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. Так, колеблющаяся струна то уплотняет, то разрежает воздух, а благодаря упругости воздуха эти чередующиеся воздействия передаются дальше в пространство - от слоя к слою, возникают упругие волны. Достигая нашего уха, они воздействуют на барабанные перепонки и вызывают ощущение звука.

На слух человек воспринимает упругие волны, имеющие частоту в пределах примерно от 16 Гц до 20 кГц (1 Гц - 1 колебание в секунду). В соответствии с этим упругие волны в любой среде, частоты которых лежат в указанных пределах, называют звуковыми волнами или просто звуком. В воздухе при температуре 0° С и нормальном давлении звук распространяется со скоростью 330 м/с.

Источником звука в газах и жидкостях могут быть не только вибрирующие тела. Например, свистят в полете пуля и стрела, завывает ветер. И рев турбореактивного самолета складывается не только из шума работающих агрегатов - вентилятора, компрессора, турбины, камеры сгорания и т. д. , но также из шума реактивной струи, вихревых, турбулентных потоков воздуха, возникающих при обтекании самолета на больших скоростях. Стремительно несущееся в воздухе или в воде тело как бы разрывает обтекающий его поток, периодически порождает в среде области разрежения и сжатия. В результате возникают звуковые волны.

Важны в учении о звуке также понятия тона и тембра звука. Всякий реальный звук, будь то голос человека или игра музыкального инструмента, - это не простое гармоническое колебание, а своеобразная смесь многих гармонических колебаний с определенным набором частот. То из них, которое имеет наиболее низкую частоту, называют основным тоном, другие - обертонами. Разное количество обертонов, присущих тому или иному звуку, придает ему особую окраску - тембр. Отличие одного тембра от другого обусловлено не только числом, но и интенсивностью обертонов, сопровождающих звучание основного тона. По тембру мы легко отличаем звуки скрипки и рояля, гитары и флейты, узнаем голоса знакомых людей.

1. 4. Высота и тембр звука

Заставим звучать две разные струны на гитаре или балалайке. Мы услышим разные звуки: один - более низкий, другой - более высокий. Звуки мужского голоса более низкие, чем звуки голоса женщины, звуки баса ниже звуков тенора, сопрано выше альта.

От чего зависит высота звука?

Можно сделать вывод, что высота звука зависит от частоты колебаний: чем больше частота колебаний источника звука, тем выше издаваемый им звук.

Чистым тоном называется звук источника, совершающего колебания одной частоты.

Звуки от других источников (например, звуки различных музыкальных инструментов, голоса людей, звук сирены и многие другие) представляют собой совокупность колебаний разных частот, т. е. совокупность чистых тонов.

Самая низкая (т. е. самая малая) частота такого сложного звука называется основной частотой, а соответствующий ей звук определенной высоты - основным тоном (иногда его называют просто тоном). Высота сложного звука определяется именно высотой его основного тона.

Все остальные тоны сложного звука называются обертонами. Обертоны определяют тембр звука, т. е. такое его качество, которое позволяет нам отличать звуки одних источников от звуков других. Например, мы легко отличаем звук рояля от звука скрипки даже в том случае, если эти звуки имеют одинаковую высоту, т. е. одну и ту же частоту основного тона. Отличие же этих звуков обусловлено разным набором обертонов.

Таким образом, высота звука определяется частотой его основного тона: чем больше частота основного тона, тем выше звук.

Тембр звука определяется совокупностью его обертонов.

1. 5. Почему существуют различные звуки?

Звуки отличаются друг от друга по громкости, высоте и тембру. Громкость звука зависит частью от удаления уха слушателя от звучащего объекта, а отчасти от амплитуды колебания последнего. Слово амплитуда означает расстояние, которое проходит тело от одной крайней точки до другой во время своих колебаний. Чем больше это расстояние, тем громче звук.

Высота звука зависит от быстроты или частоты колебаний тела. Чем больше колебаний совершает объект за одну секунду, тем выше производимый им звук.

Однако два звука, абсолютно совпадающие по громкости и высоте, могут отличаться друг от друга. Музыкальность звука зависит от числа и силы обертонов, присутствующих в нем. Если заставить струну скрипки колебаться вдоль всей длины так, чтобы при этом не возникало никаких дополнительных колебаний, то будет слышен самый низкий тон, который она только способна произвести. Этот тон называется основным. Однако, если на ней возникнут дополнительные колебания отдельных частей, то появятся дополнительные более высокие ноты. Гармонируя с основным тоном, они создадут особенное, скрипичное звучание. Эти более высокие по сравнению с основным тоном ноты и называются обертонами. Они-то и определяют тембр того или иного звука.

1. 6. Отражение и распространение возмущений.

Возмущение части натянутой резиновой трубки или пружины перемещается по ее длине. Когда возмущение достигает конца трубки, то оно отражается вне зависимости от того, закреплен конец трубки или свободен. За удерживаемый конец резко дергают вверх и затем приводят его в исходное положение. Образовавшийся на трубке гребень движется вдоль трубки до стены, где он отражается. При этом отраженная волна имеет форму впадины, т. е. находится ниже среднего положения трубки, в то время как исходная пучность находилась выше. С чем связано это различие? Представим конец резиновой трубки, закрепленный в стене. Поскольку он закреплен, он не может двигаться. Направленная вверх сила пришедшего импульса стремится заставить двигаться его вверх. Однако поскольку он не может двигаться, то должна присутствовать равная и противоположно направленная вниз сила, исходящая от опоры и приложенная к концу резиновой трубки, и поэтому отраженный импульс располагается пучностью вниз. Разность фаз отраженного и исходного импульсов равна 180°.

1. 7. Стоячие волны

Когда рука, удерживающая рези новую трубку, движется вверх и вниз и частота движения постепенно увеличивается, то достигается точка, при которой получается одиночная пучность. Дальнейшее увеличение частоты колебания руки приведет к образованию двойной пучности. Если вы пpoxpoнометрируете частоту движений руки, то вы увидите, что их частота удвоилась. Поскольку трудно двигать рукой более быстро, лучше применить механический вибратор.

Образованные волны называются стоячими или стационарными волнами. Они образуются, потому что отраженная волна накладывается на падающую.

В данном исследовании присутствуют две волны: падающая и отраженная. Они имеют одинаковые частоту, амплитуду и длину волны, но распространяются в противоположных направлениях. Это бегущие волны, но они интерферируют друг с другом и таким образом создают стоячие волны. Это имеет такие последствия: а)все частицы в каждой половине длины волны колеблются в фазе, т. е. все они движутся в одном направлении в одно время; б)каждая частица имеет амплитуду, отличную от амплитуды следующей частицы; в)разность фаз между колебаниями частиц одной полуволны и колебаниями частиц последующей полуволны равна 180°. Это попросту означает, что они либо отклонены максимально в противоположные стороны в одно время, либо, если они оказываются в среднем положении, начинают двигаться в противоположных направлениях.

Некоторые частицы не движутся(они имеют нулевую амплитуду), поскольку действующие на них силы всегда равны и противоположны. Эти точки называются узловыми или узлами, и расстояние между двумя последующими узлами составляет половину длины волны, т. е. 1\2 λ.

Максимальное движение происходит в точках и амплитуда этих точек вдвое больше амплитуды падающей волны. Эти точки называются пучностями, и расстояние между двумя последующими пучностями составляет половину длины волны. Расстояние между узлом и следующей пучностью составляет одну четвертую длины волны, т. е. 1\4λ.

Стоячая волна отличается от бегущей. В бегущей волне: а)все частицы имеют одинаковую амплитуду колебаний; б)каждая частица не находится в фазе со следующей.

1. 8. Резонансная труба.

Резонансная труба представляет собой узкую трубу, в которой создаются колебания столба воздуха. Для изменения длины столба воздуха применяются разные способы, например изменения уровня воды в трубе. Закрытый конец трубы представляет собой узел, потому что находящийся в соприкосновении с ним воздух неподвижен. Открытый конец трубы всегда является пучностью, поскольку амплитуда колебаний здесь максимальна. Присутствует один узел и одна пучность. Длина трубы составляет примерно одну четвертую длины стоячей волны.

Для того чтобы показать, что длина столба воздуха обратно пропорциональна частоте волны, нужно применить ряд камертонов. Лучше использовать маленький громкоговоритель, соединенный с откалиброванным генератором звуковой частоты, вместо камертонов фиксированной частоты. Вместо труб с водой применяется длинная труба с поршнем, поскольку это облегчает подбор длины столбов воздуха. Вблизи от конца трубы помещается постоянный источник звука, и получаются резонансные длины воздушного столба для частот 300 Гц, 350 Гц, 400 Гц, 450 Гц, 500 Гц, 550 Гц и 600 Гц.

Когда вода наливается в бутылку, образуется звук определенного тона, поскольку воздух в бутылке начинает колебаться. Высота этого тона повышается по мере уменьшения объема воздуха в бутылке. Каждая бутылка имеет определенную собственную частоту, и, когда дуешь поверх открытого горлышка бутылки, может также образоваться звук.

В начале войны 1939-1945 гг. прожектора фокусировались на самолетах при помощи оборудования, работавшего в звуковом диапазоне. Чтобы не дать им сфокусироваться, некоторые экипажи выбрасывали из самолетов пустые бутылки, когда они попадали в луч прожектора. Громкие звуки падающих бутылок воспринимались приемником, и прожектора теряли фокус

1. 9. Духовые музыкальные инструменты.

Звуки, образуемые духовыми инструментами, зависят от возникающих в трубах стоячих волн. Тон зависит от длины трубы и вида колебаний воздуха в трубе.

Например, открытая труба органа. Воздух вдувается в трубу через отверстие и ударяется об острый выступ. Это заставляет воздух в трубе колебаться. Поскольку оба конца трубы открыты, то на каждом конце всегда возникает пучность. Простейшим видом колебаний является такой, когда на каждом конце находится пучность, а один узел - в середине. Это основные колебания, и длина трубы примерно равна половине длины волны. Частота основного тона =с/2l, где с - скорость звука и l - длина трубы.

Закрытая органная труба имеет пробку на конце, т. е. конец трубы закрыт. Это означает, что на этом конце всегда находится узел. Совершенно очевидно, что: а)основная частота закрытой трубы составляет половину основной частоты открытой трубы той же длины; б)закрытой трубой могут быть образованы лишь нечетные обертоны. Таким образом, диапазон тонов открытой трубы больше, чем закрытой.

Физические условия изменяют звучание музыкальных инструментов. Повышение температуры вызывает увеличение скорости звука в воздухе и, следовательно, увеличение основной частоты. Длина трубы также несколько увеличивается, вызывая уменьшение частоты. Играя на органе, например, в церкви, исполнители просят включить обогрев, чтобы орган звучал при нормальной для него температуре. Струнные инструменты имеют регуляторы натяжения струн. Повышение температуры ведет к некоторому расширению струны и уменьшению натяжения.

Глава 2. Практическая часть

2. 1. Способ определения скорости звука при помощи резонансной трубы.

Прибор показан на рисунке. Резонансная труба представляет собой длинную узкую трубу А, соединенную с резервуаром В через резиновый патрубок. В обеих трубах находится вода. Когда В поднят, длина воздушного столба в А уменьшается, а когда В опускается, длина столба воздуха в А увеличивается. Поместите колеблющийся камертон сверху А, когда длина столба воздуха в А практически равна нулю. Вы не услышите никакого звука. По мере увеличения длины столба воздуха в А вы услышите, как звук усиливается, достигает максимума, а затем начинает затихать. Повторите эту процедуру, регулируя В таким образом, чтобы длина воздушного столба в А давала максимальный по силе звук. Затем замерьте длину l1 столба воздуха.

Громкий звук слышен потому, что собственная частота столба воздуха длиной l1 равна собственной частоте камертона, и поэтому воздушный столб колеблется в унисон с ним. Вы нашли первое положение резонанса. Фактически длина колеблющегося воздуха несколько больше столба воздуха в А.

Если вы опустите. В еще ниже, так, чтобы длина воздушного столба увеличилась, то найдете другое положение, в котором звук достигает максимальной силы. Точно определите это положение и измерьте длину l2 столба воздуха. Это - второе положение резонанса. Как и прежде, вершина находится на открытом конце трубы, а узел - на поверхности воды. Это может быть достигнуто только в случае, показанном на рисунке, при этом длина столба воздуха в трубе приблизительно составляет 3\4 длины волны (3\4 λ).

Вычитание двух замеров дает:

3\4 λ - 1\4 λ = l2 - l1 , следовательно, 1\2 λ = l2 - l1.

Итак, c = ν λ = ν 2 (l2 - l1), где ν - частота камертона. Это быстрый и достаточно точный способ определения скорости звука в воздухе.

2. 2. Эксперимент и вычисления.

Для определения скорости звуковой волны были использованы следующие инструменты и оборудование:

Штатив универсальный;

Толстостенная стеклянная трубка, запаянная с одного конца, длиной 1,2метра;

Камертон, частота которого 440 Гц, нота «ля»;

Молоточек;

Бутылка с водой;

Измерительная линейка.

Ход исследования:

1. Собрал штатив, на котором закрепил кольца на муфте.

2. Поместил стеклянную трубку в штативе.

3. Доливая воды в трубку, и возбуждая звуковые волны на камертоне, создавал стоячие волны в трубке.

4. Опытным путём добился такой высоты водяного столба, чтобы в стеклянной трубке были усиленны звуковые волны, чтобы наблюдался резонанс в трубке.

5. Замерил первую длину свободного от воды конца трубки - l2 = 58 см = 0,58 м

6. Снова долил воды в трубку. (Повторить действия пункта 3, 4, 5) – l1 = 19 см = 0,19 м

7. Выполнил вычисления по формуле: c = ν λ = ν 2 (l2 - l1),

8. с = 440 Гц * 2 (0,58 м - 0,19 м) = 880 * 0,39 = 343,2 м\с

Результат исследования – скорость звука = 343,2 м\с.

2. 3. Выводы практической части

С помощью выбранного оборудования, определи скорость звука в воздухе. Сравнили полученный результат с табличной величиной – 330 м\с. Полученная величина приблизительно равна табличной. Расхождения получились из-за погрешности измерений, вторая причина: табличная величина дана при температуре 00С, а в квартире температура воздуха = 240С.

Следовательно, предложенный метод для определения скорости звука с помощью резонансной трубы можно применять.

Заключение.

Умение вычислять и определять характеристики звука весьма полезно. Как следует из исследования, характеристики звука: громкость, амплитуда, частота, длина волны – эти значения присущи определённым звукам, по ним можно определить, какой звук мы слышим в данный момент. Мы опять сталкиваемся с математической закономерность звучания. А вот скорость звука хоть и возможно вычислить, но она зависит от температуры помещения и пространства, где происходит звучание.

Таким образом, цель исследования была выполнена.

Гипотеза исследования подтвердилась, но в дальнейшем необходимо учитывать погрешности в измерениях.

Исходя из этого, задачи исследования были выполнены:

Изучены теоретические основы этого вопроса;

Выяснены закономерности;

Выполнены необходимые замеры;

Выполнены вычисления скорости звука;

Полученные результаты вычислений были сравнены с уже имеющимися табличными данными;

Дана оценка полученных результатов.

В результате работы: o Научился определять скорость звука с помощью резонансной трубы; o Столкнулся с проблемой разной скорости звука при разной температуре, поэтому этот вопрос постараюсь исследовать в ближайшее время.

Источники звука. Звуковые колебания

Человек живёт в мире звуков. Звук для человека является источником информации. Он предостерегает людей об опасности. Звук в виде музыки, пения птиц доставляет нам наслаждение. Мы с удовольствием слушаем человека с приятным голосом. Звуки важны не только для человека, но и для животных, которым хорошее улавливание звука помогает выжить.

Звук – это механические упругие волны, распространяющиеся в газах, жидкостях, твердых телах.

Причина звука - вибрация(колебания) тел, хотя эти колебания зачастую незаметны для нашего глаза.

Источники звука - физические тела, которые колеблются, т.е. дрожат или вибрируют с частотой
от 16 до 20000 раз в секунду. Вибрирующее тело может быть твердым, например, струна
или земная кора, газообразным, например, струя воздуха в духовых музыкальных инструментах
или жидким, например, волны на воде.

Громкость

Громкость зависит от амплитуды колебаний в звуковой волне. За единицу громкости звука принят 1 Бел(в честь Александра Грэхема Белла, изобретателя телефона). На практике громкость измеряют в децибелах (дБ). 1 дБ = 0,1Б.

10 дБ – шепот;

20–30 дБ – норма шума в жилых помещениях;
50 дБ – разговор средней громкости;
80 дБ – шум работающего двигателя грузового автомобиля;
130 дБ – порог болевого ощущения

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

Высокие звуки представлены высокочастотными волнами – например, птичье пение.

Низкие звуки – это низкочастотные волны, например, звук двигателя большого грузовика.

Звуковые волны

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука.

Звуковая волна может проходить самые различные расстояния. Орудийная стрельба слышна на 10-15 км, ржание лошадей и лай собак - на 2-3 км, а шепот всего на несколько метров. Эти звуки передаются по воздуху. Но проводником звука может быть не только воздух.

Приложив ухо к рельсам, можно услышать шум приближающегося поезда значительно раньше и на большем расстоянии. Значит металл проводит звук быстрее и лучше, чем воздух. Вода тоже хорошо проводит звук. Нырнув в воду, можно отчетливо слышать, как стучат друг о друга камни, как шумит во время прибоя галька.

Свойство воды – хорошо проводить звук – широко используется для разведки в море во время войны, а также для измерения морских глубин.

Необходимое условие распространения звуковых волн – наличие материальной среды. В вакууме звуковые волны не распространяются, так как там нет частиц, передающих взаимодействие от источника колебаний.

Поэтому на Луне из-за отсутствия атмосферы царит полная тишина. Даже падение метеорита на ее поверхность не слышно наблюдателю.

В каждой среде звук распространяется с разной скоростью.

Скорость звука в воздухе - приблизительно 340 м/с.

Скорость звука в воде - 1500 м/с.

Скорость звука в металлах, в стали - 5000 м/с.

В теплом воздухе скорость звука больше, чем в холодном, что приводит к изменению направления распространения звука.

КАМЕРТОН

- это U-образная металлическая пластина , концы которой могут колебаться после удара по ней.

Издаваемый камертоном звук очень слабый и его слышно лишь на небольшом расстоянии.
Резонатор - деревянный ящик, на котором можно закрепить камертон, служит для усилениязвука.
Излучение звука при этом происходит не только с камертона, но и с поверхности резонатора.
Однако длительность звучания камертона на резонаторе будет меньше, чем без него.

Э Х О

Громкий звук, отражаясь от преград, возвращается к источнику звука спустя несколько мгновений, и мы слышим эхо.

Умножив скорость звука на время, прошедшее от его возникновения до возвращения, можно определить удвоенное расстояние от источника звука до преграды.
Такой способ определения расстояния до предметов используется в эхолокации.

Некоторые животные, например летучие мыши,
также используют явление отражения звука, применяя метод эхолокации

На свойстве отражения звука основана эхолокация.

Звук - бегущая механическая волна и передает энергию.
Однако мощность одновременного разговора всех людей на земном шаре едва ли больше мощности одного автомобиля "Москвич"!

Ультразвук.

· Колебания с частотами, превосходящими 20 000 Гц, называют ультразвуком. Ультразвук широко применяется в науке и технике.

· Жидкость вскипает при прохождении ультразвуковой волны (кавитация). При этом возникает гидравлический удар. Ультразвуки могут отрывать кусочки от поверхности металла и производить дробление твердых тел. С помощью ультразвука можно смешать не смешивающиеся жидкости. Так готовятся эмульсии на масле. При действии ультразвука происходит омыление жиров. На этом принципе устроены стиральные устройства.

· Широко используется ультразвук в гидроакустике. Ультразвуки большой частоты поглощаются водой очень слабо и могут распространяться на десятки километров. Если они встречают на своем пути дно, айсберг или другое твердое тело, они отражаются и дают эхо большой мощности. На этом принципе устроен ультразвуковой эхолот.

В металле ультразвук распространяется практически без поглощения. Применяя метод ультразвуковой локации, можно обнаружить мельчайшие дефекты внутри детали большой толщины.

· Дробящее действие ультразвука применяют для изготовления ультразвуковых паяльников.

Ультразвуковые волны , посланные с корабля, отражаются от затонувшего предмета. Компьютер засекает время появления эха и определяет местоположение предмета.

· Ультразвук применяют в медицине и биологии для эхолокации, для выявления и лечения опухолей и некоторых дефектов в тканях организма, в хирургии и травматологии для рассечения мягких и костных тканей при различных операциях, для сварки сломанных костей, для разрушения клеток (ультразвук большой мощности).

Инфразвук и его влияние на человека.

Колебания с частотами ниже 16 Гц называются инфразвуком.

В природе инфразвук возникает из-за вихревого движения воздуха в атмосфере или в результате медленных вибраций различных тел. Для инфразвука характерно слабое поглощение. Поэтому он распространяется на большие расстояния. Организм человека болезненно реагирует на инфразвуковые колебания. При внешних воздействиях, вызванных механической вибрацией или звуковой волной на частотах 4-8 Гц, человек ощущает перемещение внутренних органов, на частоте 12 Гц – приступ морской болезни.

· Наибольшую интенсивность инфразвуковых колебаний создают машины и механизмы, имеющие поверхности больших размеров, совершающие низкочастотные механические колебания (инфразвук механического происхождения) или турбулентные потоки газов и жидкостей (инфразвук аэродинамического или гидродинамического происхождения).

Звук представляет собой звуковые волны, которые вызывают колебания мельчайших частиц воздуха, других газов, а также жидких и твердых сред. Звук может возникать только там, где есть вещество, не важно, в каком агреатном состоянии оно находится. В условиях вакуума, где отсутствует какая-либо среда, звук не распространяется, потому что там отсутствуют частицы, которые и выступают распространителями звуковых волн. Например, в космосе. Звук может модифицироваться, видоизменяться, превращаясь в иные формы энергии. Так, звук, преобразованный в радиоволны или в электрическую энергию, можно передавать на расстояния и записывать на информационные носители.

Звуковая волна

Движения предметов и тел практически всегда становятся причиной колебаний окружающей среды. Не важно, вода это или воздух. В процессе этого частицы среды, которой передаются колебания тела, также начинают колебаться. Возникают звуковые волны. Причем движения осуществляются в направлениях вперед и назад, поступательно сменяя друг друга. Поэтому звуковая волна является продольной. Никогда в ней не возникает поперечного движения вверх и вниз.

Характеристики звуковых волн

Как и любое физическое явление, они имеют свои величины, при помощи которых можно описать свойства. Основные характеристики звуковой волны - это ее частота и амплитуда. Первая величина показывает, какое количество волн образуется за секунду. Вторая определяет силу волны. Низкочастотные звуки имеют низкие показатели частоты, и наоборот. Частота звука измеряется в Герцах, и если она превышает 20 000 Гц, то возникает ультразвук. Примеров низкочастотных и высокочастотных звуков в природе и окружающем человека мире достаточно. Щебетание соловья, раскаты грома, грохот горной реки и другие - это все разные звуковые частоты. Значение амплитуды волны напрямую зависит от того, насколько звук громок. Громкость же, в свою очередь, уменьшается по мере удаления от источника звука. Соответственно, и амплитуда тем меньше, чем дальше от эпицентра находится волна. Другими словами, амплитуда звуковой волны уменьшается при удалении от источника звука.

Скорость звука

Этот показатель звуковой волны находится в прямой зависимости от характера среды, в которой она распространяется. Значимую роль здесь играют и влажность, и температура воздуха. В средних погодных условиях скорость звука составляет приблизительно 340 метров в секунду. В физике существует такое понятие, как сверхзвуковая скорость, которая всегда по значению больше, чем скорость звука. С такой скоростью распространяются звуковые волны при движении самолета. Самолет движется со сверхзвуковой скоростью и даже обгоняет звуковые волны, создаваемые им. Вследствие давления, постепенно увеличивающегося позади самолета, образуется ударная звуковая волна. Интересна и мало кому известна единица измерения такой скорости. Называется она Мах. 1 Мах равен скорости звука. Если волна движется со скоростью 2 Маха, значит, она распространяется в два раза быстрее, чем скорость звука.

Шумы

В повседневной жизни человека присутствуют постоянные шумы. Измеряется уровень шума в децибелах. Движение автомобилей, ветер, шелест листвы, переплетение голосов людей и другие звуковые шумы являются нашими спутниками ежедневно. Но к таким шумам слуховой анализатор человека имеет возможность привыкать. Однако существуют и такие явления, с которыми даже приспособительные способности человеческого уха не могут справиться. Например, шум, превышающий 120 дБ, способен вызвать ощущение боли. Самое громкое животное - синий кит. Когда он издает звуки, его можно услышать на расстоянии более 800 километров.

Эхо

Как возникает эхо? Здесь все очень просто. Звуковая волна имеет способность отражаться от разных поверхностей: от воды, от скалы, от стен в пустом помещении. Эта волна возвращается к нам, поэтому мы слышим вторичный звук. Он не такой четкий, как первоначальный, поскольку некоторая энергия звуковой волны рассеивается при движении до преграды.

Эхолокация

Отражение звука используется в различных практических целях. Например, эхолокация. Она основана на том, что с помощью ультразвуковых волн можно определить расстояние до объекта, от которого эти волны отражаются. Расчеты осуществляются при измерении времени, за которое ульразвук доберется до места и вернется обратно. Способностью к эхолокации обладают многие животные. Например, летучие мыши, дельфины используют ее для поиска пищи. Другое применение эхолокация нашла в медицине. При исследованиях с помощью ультразвука образуется картинка внутренних органов человека. В основе такого метода находится то, что ультразвук, попадая в отличную от воздуха среду, возвращается обратно, формируя таким образом изображение.

Звуковые волны в музыке

Почему музыкальные инструменты издают те или иные звуки? Гитарные переборы, наигрыши пианино, низкие тона барабанов и труб, очаровывающий тонкий голосок флейты. Все эти и многие другие звуки возникают по причине колебаний воздуха или, другими словами, из-за появления звуковых волн. Но почему звучание музыкальных инструментов настолько разнообразное? Оказывается, это зависит от некоторых факторов. Первое - это форма инструмента, второе - материал, из которого он изготовлен.

Рассмотрим это на примере струнных инструментов. Они становятся источником звука, когда на струны воздействуют касанием. Вследствие этого они начинают производить колебания и посылать в окружающую среду разные звуки. Низкий звук какого-либо струнного инструмента обусловлен большей толщиной и длиной струны, а также слабостью ее натяжения. И наоборот, чем сильнее натянута струна, чем она тоньше и короче, тем более высокий звук получается в результате игры.

Действие микрофона

Оно основано на преобразовании энергии звуковой волны в электрическую. В прямой зависимости при этом находятся сила тока и характер звука. Внутри любого микрофона расположена тонкая пластина, выполненная из металла. При воздействии звуком она начинает совершать колебательные движения. Спираль, с которой соединена пластинка, также вибрирует, в результате чего возникает электрический ток. Почему он появляется? Это связано с тем, что в микрофоне также встроены магниты. При колебаниях спирали между его полюсами и образуется электрический ток, который идет по спирали и далее - на звуковую колонку (громкоговоритель) или к технике для записи на информационный носитель (на кассету, диск, компьютер). Кстати, аналогичное строение имеет микрофон в телефоне. Но как действуют микрофоны на стационарном и мобильном телефоне? Начальная фаза одинакова для них - звук человеческого голоса передает свои колебания на пластинку микрофона, далее все по описанному выше сценарию: спираль, которая при движении замыкает два полюса, создается ток. А что дальше? Со стационарным телефоном все более-менее понятно - как и в микрофоне, звук, преобразованный в электрический ток, бежит по проводам. А как же обстоит дело с сотовым телефоном или, например, с рацией? В этих случаях звук превращается в энергию радиоволн и попадает на спутник. Вот и все.

Явление резонанса

Иногда создаются такие условия, когда амплитуда колебаний физического тела резко возрастает. Это происходит вследствие сближения значений частоты вынужденных колебаний и собственной частоты колебаний предмета (тела). Резонанс может приносить как пользу, так и вред. Например, чтобы вызволить машину из ямки, ее заводят и толкают взад-вперед для того, чтобы вызвать резонанс и придать автомобилю инерцию. Но бывали и случаи негативного последствия резонанса. К примеру, в Петербурге приблизительно сто лет назад рухнул мост под синхронно шагающими солдатами.

Вопросы.

1. Расскажите об опытах, изображенных на рисунках 70-73. Какой вывод из них следует?

В первом опыте (рис. 70) зажатая в тиски металлическая линейка издает звук при ее колебании.
Во втором опыте (рис. 71) можно наблюдать колебания струны, которая при этом тоже издает звук.
В третьем опыте (рис. 72) наблюдается звучание камертона.
В четвертом опыте (рис. 73) колебания камертона "записываются" на закопченую пластинку. Все эти опыты демонстрируют колебательный характер возникновения звука. Звук появляется в результате колебаний. В четвертом опыте это можно еще и наглядно наблюдать. Острие иглы оставляет след в виде близком к синусоиде. При этом звук не появляется ниоткуда, а порождается источниками звука: линейкой, струной, камертоном.

2. Каким общим свойством обладают все источники звука?

Любой источник звука обязательно колеблется.

3. Механические колебания каких частот называются звуковыми и почему?

Звуковыми называются механические колебания с частотами от 16 Гц до 20 000 Гц, т.к. в данном частотном диапазоне они воспринимаются человеком.

4. Какие колебания называются ультразвуковыми? инфразвуковыми?

Колебания с частотами более 20 000 Гц называются ультразвуковыми, а с частотами ниже 16 Гц - инфразвуковыми.

5. Расскажите об измерении глубины моря методом эхолокации.

Упражнения.

1. Звук от взмахов крыльев летящего комара мы слышим. а летящей птицы - нет. Почему?

Частота колебаний крыльев комара 600 Гц (600 взмахов в секунду), воробья 13 ГЦ, а человеческое ухо воспринимает звуки от 16 Гц.