Давление насыщенных паров уксусной кислоты. Ацетон: формула, особенности свойств, применение

Что собой представляет ацетон? Формула этого кетона рассматривается в школьном курсе химии. Но далеко не все имеют представление о том, как опасен запах данного соединения и какими свойствами обладает это органическое вещество.

Особенности ацетона

Ацетон технический является самым распространенным растворителем, применяемым в современном строительстве. Так как данное соединение имеет невысокий уровень токсичности, его также применяют в фармацевтической и пищевой промышленности.

Ацетон технический используется в качестве химического сырья при производстве многочисленных органических соединений.

Медики считают его наркотическим веществом. При вдыхании концентрированных паров ацетона возможно серьезное отравление и поражение центральной нервной системы. Данное соединение представляет серьезную угрозу для подрастающего поколения. Токсикоманы, которые используют пары ацетона для того, чтобы вызвать состоянием эйфории, сильно рискуют. Медики опасаются не только за физическое здоровье детей, но и за их психическое состояние.

Смертельной считается доза от 60 мл. При попадании в организм значительного количества кетона наступает потеря сознания, а через 8-12 часов - смерть.

Физические свойства

Данное соединение при нормальных условиях находится в жидком состоянии, не имеет цвета, обладает специфическим запахом. Ацетон, формула которого имеет вид СН3СНОСН3, обладает гигроскопическими свойствами. Данное соединение в неограниченных количествах смешивается с водой, этиловым спиртом, метанолом, хлороформом. У него невысокая температура плавления.

Особенности использования

В настоящее время область применения ацетона достаточно широка. Его по праву считают одним из самых востребованных продуктов, применяемых при создании и производстве лакокрасочных материалов, в отделочных работах, химической промышленности, строительстве. Все в большем количестве ацетон применяют для обезжиривания меха и шерсти, удаления из смазочных масел воска. Именно этим органическим веществом пользуются маляры и штукатуры в своей профессиональной деятельности.

Как сохранить ацетон, формула которого СН3СОСН3? Для того чтобы защитить это летучее вещество от негативного воздействия ультрафиолетовых лучей, его помещают в пластиковые, стеклянные, металлические флаконы подальше от УФ.

Помещение, где предполагается размещение существенного количества ацетона, необходимо систематически проветривать и установить качественную вентиляцию.

Особенности химических свойств

Название данное соединение получило от латинского слова «ацетум», означающее в переводе «уксус». Дело в том, что химическая формула ацетона C3H6O появилась гораздо позже, чем было синтезировано само вещество. Его получали из ацетатов, а затем использовали для изготовления ледяной синтетической уксусной кислоты.

Первооткрывателем соединения считают Андреаса Либавиуса. В конце XVI века путем сухой перегонки ацетата свинца ему удалось получить вещество, химический состав которого был расшифрован только в 30-х годах XIX века.

Ацетон, формула которого СН3СОСН3, до начала XX века получали путем коксования древесины. После повышения спроса во время Первой мировой войны на это органическое соединение, стали появляться новые способы синтеза.

Ацетон (ГОСТ 2768-84) является технической жидкостью. По химической активности данное соединение является одним из самых реакционноспособных в классе кетонов. Под воздействием щелочей наблюдается адольная конденсация, в результате которой образуется диацетоновый спирт.

При пиролизе из него получают кетен. В реакции с циановодородом образуется ацетонцианидангидрин. Для пропанона характерно замещение атомов водорода на галогены, происходящее при повышенной температуре (либо в присутствии катализатора).

Способы получения

В настоящее время основное количество кислородсодержащего соединения получают из пропена. Технический ацетон (ГОСТ 2768-84) должен обладать определенными физическими и эксплуатационными характеристиками.

Кумольный способ состоит из трех стадий и предполагает производство ацетона из бензола. Сначала путем его алкилирования с пропеном получают кумол, затем окисляют полученный продукт до гидропероксида и расщепляют его под воздействием серной кислоты до ацетона и фенола.

Кроме того, это карбонильное соединение получают при каталитическом окислении изопропанола при температуре около 600 градусов по Цельсия. В качестве ускорителей процесса выступают металлическое серебро, медь, платина, никель.

Среди классических технологий производства ацетона особый интерес представляет реакция прямого окисления пропена. Данный процесс осуществляется при повышенном давлении и присутствии в качестве катализатора хлорида двухвалентного палладия.

Также можно получить ацетон путем брожения крахмала под воздействием бактерий Clostridium acetobutylicum. Кроме кетона среди продуктов реакции будет присутствовать бутанол. Среди недостатков этого варианта получения ацетона отметим несущественный процентный выход.

Заключение

Пропанон является типичным представителем карбонильных соединений. Потребители знакомы с ним как с растворителем и обезжиривателем. Он незаменим при изготовлении лаков, лекарственных препаратов, взрывчатых веществ. Именно ацетон входит в состав клея для кинопленки, является средством для очистки поверхностей от монтажной пены и суперклея, средством промывки инжекторных двигателей и способом повышения октанового числа горючего, и т.п.

34kb. 17.04.2009 13:03 скачать n30.doc 27kb. 17.04.2009 13:11 скачать n31.doc 67kb. 17.04.2009 13:18 скачать n32.doc 69kb. 15.06.2009 10:50 скачать n33.doc 211kb. 19.06.2009 16:59 скачать n34.doc 151kb. 19.06.2009 17:01 скачать n35.doc 78kb. 16.04.2009 16:07 скачать n36.doc 95kb. 19.06.2009 17:03 скачать n37.doc 82kb. 15.06.2009 15:02 скачать n38.doc 63kb. 19.06.2009 17:06 скачать n39.doc 213kb. 15.06.2009 15:08 скачать n40.doc 47kb. 15.04.2009 15:55 скачать n41.doc 83kb. 15.06.2009 10:25 скачать n42.doc 198kb. 19.06.2009 16:46 скачать n43.doc 379kb. 19.06.2009 16:49 скачать n44.doc 234kb. 19.06.2009 16:52 скачать n45.doc 141kb. 19.06.2009 16:55 скачать n46.doc 329kb. 15.06.2009 11:53 скачать n47.doc 656kb. 19.06.2009 16:57 скачать n48.doc 21kb. 13.04.2009 23:22 скачать n49.doc 462kb. 15.06.2009 11:42 скачать n50.doc 120kb. 16.03.2010 13:45 скачать

n16.doc

Глава 7 . ДАВЛЕНИЕ ПАРОВ, ТЕМПЕРАТУРЫ ФАЗОВЫХ

ПЕРЕХОДОВ, ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ
Сведения о давлении паров чистых жидкостей и растворов, их температурах кипения и затвердевания (плавления), а также о поверхностном натяжении необходимы для расчетов разнообразных технологических процессов: испарения и конденсации, выпаривания и сушки, перегонки и ректификации и др.
7.1. Давление паров
Одним из наиболее простых уравнений для определения давления насыщенного пара чистой жидкости в зависимости от температуры является уравнение Антуана:

, (7.1)

Где А , В , С – постоянные, характерные для отдельных веществ. Значения постоянных для некоторых веществ приведены в табл. 7.1.

Если известны две температуры кипения при соответствующих давлениях, то, принимая С = 230, можно определить постоянные А и В путем совместного решения следующих уравнений:

; (7.2)

. (7.3)

Уравнение (7.1) вполне удовлетворительно соответствует экспериментальным данным в широкой области температур между температурой плавления и
= 0,85 (т.е.
  = 0,85). Наибольшую точность это уравнение дает в тех случаях, когда все три константы можно вычислить на основе опытных данных. Точность расчета по уравнениям (7.2) и (7.3) существенно снижается уже при
 250 K, а для высокополярных соединений при  0,65.

Изменение давления пара вещества в зависимости от температуры можно определить методом сравнения (по правилу линейности), исходя из известных давлений эталонной жидкости. Если известны две температуры жидкого вещества при соответствующих давлениях насыщенного пара, можно воспользоваться уравнением

, (7.4)

Где
и
– давления насыщенного пара двух жидкостей А и В при одной и той же температуре ;
и
– давления насыщенного пара этих жидкостей при температуре ; С – постоянная.
Таблица 7.1. Давление паров некоторых веществ в зависимости

от температуры
В таблице приведены значения констант А , В и С уравнения Антуана: , где – давление насыщенного пара, мм рт.ст. (1 мм рт.ст = 133,3 Па); Т – температура, K.

Название вещества

Химическая формула


Температурный интервал, о С

А

В

С

от

до

Азот

N 2

–221

–210,1

7,65894

359,093

0

Азота диоксид

N 2 O 4 (NO 2)

–71,7

–11,2

12,65

2750

0

–11,2

103

8,82

1746

0

Азота оксид

NO

–200

–161

10,048

851,8

0

–164

–148

8,440

681,1

0

Акриламид

С 3 Н 5 ON

7

77

12,34

4321

0

77

137

9,341

3250

0

Акролеин

С 3 Н 4 O

–3

140

7,655

1558

0

Аммиак

NH 3

–97

–78

10,0059

1630,7

0

Анилин

C 6 H 5 NH 2

15

90

7,63851

1913,8

–53,15

90

250

7,24179

1675,3

–73,15

Аргон

Ar

–208

–189,4

7,5344

403,91

0

–189,2

–183

6,9605

356,52

0

Ацетилен

C 2 H 2

–180

–81,8

8,7371

1084,9

–4,3

–81,8

35,3

7,5716

925,59

9,9

Ацетон

C 3 H 6 O

–59,4

56,5

8,20

1750

0

Бензол

C 6 H 6

–20

5,5

6,48898

902,28

–95,05

5,5

160

6,91210

1214,64

–51,95

Бром

Br 2

8,6

110

7,175

1233

–43,15

Бромистый водород

HBr

–99

–87,5

8,306

1103

0

–87,5

–67

7,517

956,5

0

Продолжение табл. 7.1

Название вещества

Химическая формула


Температурный интервал, о С

А

В

С

от

до

1,3-Бутадиен

C 4 H 6

–66

46

6,85941

935,53

–33,6

46

152

7,2971

1202,54

4,65

н -Бутан

C 4 H 10

–60

45

6,83029

945,9

–33,15

45

152

7,39949

1299

15,95

Бутиловый спирт

C 4 H 10 O

75

117,5

9,136

2443

0

Винилацетат

CH 3 COOCH=CH 2

0

72,5

8,091

1797,44

0

Винилхлорид

CH 2 =CHСl

–100

20

6,49712

783,4

–43,15

–52,3

100

6,9459

926,215

–31,55

50

156,5

10,7175

4927,2

378,85

Вода

Н 2 О

0

100

8,07353

1733,3

–39,31

Гексан

C 6 H 1 4

–60

110

6,87776

1171,53

–48,78

110

234,7

7,31938

1483,1

–7,25

Гептан

C 7 H 1 6

–60

130

6,90027

1266,87

–56,39

130

267

7,3270

1581,7

–15,55

Декан

C 10 H 22

25

75

7,33883

1719,86

–59,35

75

210

6,95367

1501,27

–78,67

Диизопропиловый

эфир


C 6 H 1 4 O

8

90

7,821

1791,2

0

N,N-Диметилацетамид

С 4 Н 9 ON

0

44

7,71813

1745,8

–38,15

44

170

7,1603

1447,7

–63,15

1,4- Диоксан

C 4 H 8 O 2

10

105

7,8642

1866,7

0

1,1-Дихлорэтан

C 2 H 4 Cl 2

0

30

7,909

1656

0

1,2-Дихлорэтан

C 2 H 4 Cl 2

6

161

7,18431

1358,5

–41,15

161

288

7,6284

1730

9,85

Диэтиловый эфир

(C 2 H 5) 2 О

–74

35

8,15

1619

0

Изомасляная кислота

C 4 H 8 O 2

30

155

8,819

2533

0

Изопрен

C 5 H 8

–50

84

6,90334

1081,0

–38,48

84

202

7,33735

1374,92

2,19

Изопропиловый спирт

C 3 H 8 O

–26,1

82,5

9,43

2325

0

Иодистый водород

HI

–50

–34

7,630

1127

0

Криптон

Kr

–207

–158

7,330

7103

0

Ксенон

Хе

–189

–111

8,00

841,7

0

n -Ксилол

C 8 H 10

25

45

7,32611

1635,74

–41,75

45

190

6,99052

1453,43

–57,84

о -Ксилол

C 8 H 10

25

50

7,35638

1671,8

–42,15

50

200

6,99891

1474,68

–59,46

Продолжение табл. 7.1

Название вещества

Химическая формула


Температурный интервал, о С

А

В

С

от

до

Масляная кислота

C 4 H 8 O 2

80

165

9,010

2669

0

Метан

CH 4

–161

–118

6,81554

437,08

–0,49

–118

–82,1

7,31603

600,17

25,27

Метиленхлорид

(дихлорметан)


CH 2 Cl 2

–28

121

7,07138

1134,6

–42,15

127

237

7,50819

1462,59

5,45

Метиловый спирт

CH 4 О

7

153

8,349

1835

0

-Метилстирол

C 9 H 10

15

70

7,26679

1680,13

–53,55

70

220

6,92366

1486,88

–71,15

Метилхлорид

CH 3 Cl

–80

40

6,99445

902,45

–29,55

40

143,1

7,81148

1433,6

44,35

Метилэтилкетон

C 4 H 8 O

–15

85

7,764

1725,0

0

Муравьиная кислота

CH 2 O 2

–5

8,2

12,486

3160

0

8,2

110

7,884

1860

0

Неон

Ne

–268

–253

7,0424

111,76

0

Нитробензол

С 6 Н 5 O 2 N

15

108

7,55755

2026

–48,15

108

300

7,08283

1722,2

–74,15

Нитрометан

СН 3 O 2 N

55

136

7,28050

1446,19

–45,63

Октан

C 8 H 18

15

40

7,47176

1641,52

–38,65

40

155

6,92377

1355,23

–63,63

Пентан

C 5 H 12

–30

120

6,87372

1075,82

–39,79

120

196,6

7,47480

1520,66

23,94

Пропан

C 3 H 8

–130

5

6,82973

813,2

–25,15

5

96,8

7,67290

1096,9

47,39

Пропилен (пропен)

C 3 H 6

–47,7

0,0

6,64808

712,19

–36,35

0,0

91,4

7,57958

1220,33

36,65

Пропилена оксид

C 3 H 6 O

–74

35

6,96997

1065,27

–46,87

Пропиленгликоль

С 3 Н 8 O 2

80

130

9,5157

3039,0

0

Пропиловый спирт

C 3 H 8 O

–45

–10

9,5180

2469,1

0

Пропионовая кислота

С 3 Н 6 O 2

20

140

8,715

2410

0

Сероводород

H 2 S

–110

–83

7,880

1080,6

0

Сероуглерод

CS 2

–74

46

7,66

1522

0

Серы диоксид

SO 2

–112

–75,5

10,45

1850

0

Серы триоксид ()

SO 3

–58

17

11,44

2680

0

Серы триоксид ()

SO 3

–52,5

13,9

11,96

2860

0

Тетрахлорэтилен

С 2 Cl 4

34

187

7,02003

1415,5

–52,15

Окончание табл. 7.1

Название вещества

Химическая формула


Температурный интервал, о С

А

В

С

от

до

Тиофенол

C 6 H 6 S

25

70

7,11854

1657,1

–49,15

70

205

6,78419

1466,5

–66,15

Толуол

С 6 Н 5 СН 3

20

200

6,95334

1343,94

–53,77

Трихлорэтилен

C 2 HCl 3

7

155

7,02808

1315,0

–43,15

Углерода диоксид

CО 2

–35

–56,7

9,9082

1367,3

0

Углерода оксид



–218

–211,7

8,3509

424,94

0

Уксусная кислота

C 2 H 4 О 2

16,4

118

7,55716

1642,5

–39,76

Уксусный ангидрид

C 4 H 6 О 3

2

139

7,12165

1427,77

–75,11

Фенол

C 6 H 6 О

0

40

11,5638

3586,36

0

41

93

7,86819

2011,4

–51,15

Фтор

F 2

–221,3

–186,9

8,23

430,1

0

Хлор

Cl 2

–154

–103

9,950

1530

0

Хлорбензол

С 6 Н 5 Сl

0

40

7,49823

1654

–40,85

40

200

6,94504

1413,12

–57,15

Хлористый водород

HCl

–158

–110

8,4430

1023,1

0

Хлороформ

CHCl 3

–15

135

6,90328

1163,0

–46,15

135

263

7,3362

1458,0

2,85

Циклогексан

C 6 H 12

–20

142

6,84498

1203,5

–50,29

142

281

7,32217

1577,4

2,65

Четыреххлористый

углерод


CCl 4

–15

138

6,93390

1242,4

–43,15

138

283

7,3703

1584

3,85

Этан

C 2 H 6

–142

–44

6,80266

636,4

–17,15

–44

32,3

7,6729

1096,9

47,39

Этилбензол

C 8 H 10

20

45

7,32525

1628,0

–42,45

45

190

6,95719

1424,26

–59,94

Этилен

C 2 H 4

–103,7

–70

6,87477

624,24

–13,14

–70

9,5

7,2058

768,26

9,28

Этилена оксид

C 2 H 4 О

–91

10,5

7,2610

1115,10

–29,01

Этиленгликоль

C 2 H 6 О 2

25

90

8,863

2694,7

0

90

130

9,7423

3193,6

0

Этиловый спирт

C 2 H 6 О

–20

120

6,2660

2196,5

0

Этилхлорид

С 2 Н 5 Сl

–50

70

6,94914

1012,77

–36,48

При определении по правилу линейности давления насыщенного пара водорастворимых веществ в качестве эталонной жидкости используют воду, а в случае органических соединений, нерастворимых в воде, обычно берут гексан. Величины давления насыщенного пара воды в зависимости от температуры приведены в табл. П.11. Зависимость давления насыщенного пара от температуры гексана дана на рис. 7.1.

Рис. 7.1. Зависимость давления насыщенного пара гексана от температуры

(1 мм рт.ст. = 133,3 Па)
На основе соотношения (7.4) построена номограмма для определения давления насыщенного пара в зависимости от температуры (см. рис. 7.2 и табл. 7.2).

Над растворами давление насыщенного пара растворителя меньше, чем над чистым растворителем. Причем понижение давления пара тем больше, чем выше концентрация растворенного вещества в растворе.


Аллен

6

1,2-Дихлорэтан

26

Пропилен

4

Аммиак

49

Диэтиловый эфир

15

Пропионовая

56

Анилин

40

Изопрен

14

кислота

Ацетилен

2

Иодбензол

39

Ртуть

61

Ацетон

51

м -Крезол

44

Тетралин

42

Бензол

24

о -Крезол

41

Толуол

30

Бромбензол

35

м -Ксилол

34

Уксусная кислота

55

Бромистый этил

18

изо -Масляная

57

Фторбензол

27

-Бромнафталин

46

кислота

Хлорбензол

33

1,3-Бутадиен

10

Метиламин

50

Хлористый винил

8

Бутан

11

Метилмоносилан

3

Хлористый метил

7

-Бутилен

9

Метиловый спирт

52

Хлористый

19

-Бутилен

12

Метилформиат

16

метилен

Бутиленгликоль

58

Нафталин

43

Хлористый этил

13

Вода

54

-Нафтол

47

Хлороформ

21

Гексан

22

-Нафтол

48

Четыреххлористый

23

Гептан

28

Нитробензол

37

углерод

Глицерин

60

Октан

31*

Этан

1

Декалин

38

32*

Этилацетат

25

Декан

36

Пентан

17

Этиленгликоль

59

Диоксан

29

Пропан

5

Этиловый спирт

53

Дифенил

45

Этилформиат

20

В практике широко используются многочисленные растворы, состоящие из двух и более хорошо растворимых друг в друге жидкостей. Наиболее простыми являются смеси (растворы), состоящие из двух жидкостей – бинарные смеси. Закономерности, найденные для таких смесей, можно использовать и для более сложных. К таким бинарным смесям можно отнести: бензол-толуол, спирт-эфир, ацетон-вода, спирт-вода и т.д. В этом случае в паровой фазе содержатся оба компонента. Давление насыщенного пара смеси будет слагаться из парциальных давлений компонентов. Так как переход растворителя из смеси в парообразное состояние, выражаемое его парциальным давлением, тем значительнее, чем больше содержание его молекул в растворе, Рауль нашел, что «парциальное давление насыщенного пара растворителя над раствором равно произведению давления насыщенного пара над чистым растворителем при той же температуре на его мольную долю в растворе»:

где - давление насыщенного пара растворителя над смесью;- давление насыщенного пара над чистым растворителем;N – мольная доля растворителя в смеси.

Уравнение (8.6) является математическим выражением закона Рауля. Для описания поведения летучего растворенного вещества (второго компонента бинарной системы) применяется это же выражение:

. (8.7)

Общее давление насыщенного пара над раствором будет равно (закон Дальтона):

Зависимость парциального и общего давления паров смеси от ее состава показана на рис. 8.3, где на оси ординат отложено давление насыщенных паров, а на оси абсцисс – состав раствора в мольных долях. При этом по оси абсцисс содержание одного вещества (А) убывает слева направо от 1,0 до 0 мольных долей, а содержание второго компонента (В) одновременно в том же направлении увеличивается от 0 до 1,0. При каждом определенном составе общее давление насыщенного пара равняется сумме парциальных давлений. Общее давление смеси изменяется от давления насыщенного пара одной индивидуальной жидкости до давления насыщенного пара второй чистой жидкости.

Законы Рауля и Дальтона часто используются для оценки пожарной опасности смесей жидкостей.

Состав смеси, мольные доли

Рис. 8.3 Диаграмма состав раствора – давление насыщенного пара

Обычно состав паровой фазы не совпадает с составом жидкой фазы и паровая фаза обогащена более летучим компонентом. Это различие можно изобразить и графически (график имеет вид аналогичный графику на рис. 8.4, только на оси ординат взята не температура а давление).

В диаграммах, представляющих зависимость температур кипения от состава (диаграмма состав-температура кипения рис. 8.4), обычно принято строить две кривые, одна из которых связывает эти температуры с составом жидкой фазы, а другая с составом пара. Нижняя кривая относится к составам жидкости (кривая жидкости), а верхняя – к составам пара (кривая пара).

Поле, заключенное между двумя кривыми, соответствует двухфазной системе. Любая точка, находящаяся в этом поле, отвечает равновесию двух фаз – раствора и насыщенного пара. Состав равновесных фаз определяется координатами точек, лежащих на пересечении изотермы, проходящей через кривые, и данную точку.

При температуре t 1 (при данном давлении) будет кипеть жидкий раствор состава х 1 (точка а 1 на кривой жидкости), пар, равновесный с этим раствором, обладает составом х 2 (точка b 1 на кривой пара).

Т.е. жидкости состава x 1 будет соответствовать пар состава х 2 .

Исходя из выражений:
,
,
,
,

взаимосвязь между составом жидкой и паровой фаз может быть выражена соотношением:

. (8.9)

Рис. 8.4. Диаграмма состав-температура кипения двойных смесей.

Реальное давление насыщенного пара индивидуальной жидкости при данной температуре есть характерная величина. Практически нет жидкостей, которые бы обладали одинаковыми значениями давления насыщенного пара при одной и той же температуре. Поэтому всегда больше или меньше. Если>, то>, т.е. состав паровой фазы обогащен компонентом А. Изучая растворы, Д.П. Коновалов (1881г.) сделал обобщение, получившее название первого закона Коновалова.

В двойной системе пар, по сравнению с находящейся с ним в равновесии жидкостью, относительно богаче тем из компонентов, прибавление которого к системе повышает общее давление пара, т.е. понижает температуру кипения смеси при данном давлении.

Первый закон Коновалова является теоретической основой для разделения жидких растворов на исходные компоненты путем фракционной перегонки. Например, система, характеризуемая точкой К, состоит из двух равновесных фаз, состав которых определяется точками a и b: точка а характеризует состав насыщенного пара, точка b - состав раствора.

По графику можно провести сопоставления составов паровых и жидких фаз для любой точки, заключенной в плоскости между кривыми.

Реальные растворы . Закон Рауля не выполняется для реальных растворов. Отклонение от закона Рауля существует двух типов:

    парциальное давление растворов больше давлений или летучести паров идеальных растворов. Общее давление пара больше аддитивной величины. Такие отклонения называются положительными, например, для смесей (рис. 8.5 а, б) CH 3 COCH 3 -C 2 H 5 OH, CH 3 COCH 3 -CS 2 , C 6 H 6 - CH 3 COCH 3 , H 2 O-CH 3 OH, C 2 H 5 OH-CH 3 OCH 3 , CCl 4 -C 6 H 6 и др.;

б

Рис. 8.5. Зависимость общего и парциальных давлений пара от состава:

а – для смесей с положительным отклонением от закона Рауля;

б – для смесей с отрицательным отклонением от закона Рауля.

    парциальное давление растворов меньше давлений паров идеальных растворов. Общее давление пара меньше аддитивной величины. Такие отклонения называются отрицательными. Например, для смеси: H 2 O-HNO 3 ; H 2 O-HCl; CHCl 3 -(CH 3) 2 CO; CHCl 3 -C 6 H 6 и т.д.

Положительные отклонения наблюдаются в растворах, у которых разнородные молекулы взаимодействуют с меньшей силой, чем однородные.

Это облегчает переход молекул из раствора в паровую фазу. Растворы с положительным отклонением образуются с поглощением теплоты, т.е. теплота смешения чистых компонентов будет положительной, происходит увеличение объема, уменьшение ассоциации.

Отрицательные отклонения от закона Рауля возникают в растворах, у которых происходит усиление взаимодействия разнородных молекул, сольватация, образование водородных связей, образование химических соединений. Это затрудняет переход молекул из раствора в газовую фазу.

МЕТОД РАСЧЕТА ПАРАМЕТРОВ ИСПАРЕНИЯ ГОРЮЧИХ НЕНАГРЕТЫХ ЖИДКОСТЕЙ И СЖИЖЕННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ

И. 1 Интенсивность испарения W, кг/(с· м 2), определяют по справочным и экспериментальным данным. Для ненагретых выше температуры окружающей среды ЛВЖ, при отсутствии данных допускается рассчитывать W по формуле 1)

W = 10 -6 h p н, (И.1)

где h - коэффициент, принимаемый по таблице И.1 в зависимости от скорости и температуры воздушного потока над поверхностью испарения;

М - молярная масса, г/моль;

p н - давление насыщенного пара при расчетной температуре жидкости t р, определяемое по справочным данным, кПа.

Таблица И.1

Скорость воздушного потока в помещении, м/с Значение коэффициента h при температуре t, ° С, воздуха в помещении
10 15 20 30 35
0,0 1,0 1,0 1,0 1,0 1,0
0,1 3,0 2,6 2,4 1,8 1,6
0,2 4,6 3,8 3,5 2,4 2,3
0,5 6,6 5,7 5,4 3,6 3,2
1,0 10,0 8,7 7,7 5,6 4,6

И.2 Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу паров испарившегося СУГ m СУГ, кг/м 2 , по формуле 1)

, (И.2)

1) Формула применима при температуре подстилающей поверхности от минус 50 до плюс 40 °С.

где М - молярная масса СУГ, кг/моль;

L исп - мольная теплота испарения СУГ при начальной температуре СУГ Т ж, Дж/моль;

Т 0 - начальная температура материала, на поверхность которого разливается СУГ, соответствующая расчетной температуре t p , К;

Т ж - начальная температура СУГ, К;

l тв - коэффициент теплопроводности материала, на поверхность которого разливается СУГ, Вт/(м · К);

а - эффективный коэффициент температуропроводности материала, на поверхность которого разливается СУГ, равный 8,4· 10 -8 м 2 /с;

t - текущее время, с, принимаемое равным времени полного испарения СУГ, но не более 3600 с;

Число Рейнольдса (n - скорость воздушного потока, м/с; d - характерный размер пролива СУГ, м;

u в - кинематическая вязкость воздуха при расчетной температуре t р, м 2 /с);

l в - коэффициент теплопроводности воздуха при расчетной температуре t р, Вт/(м · К).

Примеры - Расчет параметров испарения горючих ненагретых жидкостей и сжиженных углеводородных газов

1 Определить массу паров ацетона, поступающих в объем помещения в результате аварийной разгерметизации аппарата.

Данные для расчета

В помещении с площадью пола 50 м 2 установлен аппарат с ацетоном максимальным объемом V aп = 3 м 3 . Ацетон поступает в аппарат самотеком по трубопроводу диаметром d = 0,05 м с расходом q, равным 2 · 10 -3 м 3 /с. Длина участка напорного трубопровода от емкости до ручной задвижки l 1 = 2 м. Длина участка отводящего трубопровода диаметром d = 0,05 м от емкости до ручной задвижки L 2 равна 1 м. Скорость воздушного потока и в помещении при работающей общеобменной вентиляции равна 0,2 м/с. Температура воздуха в помещении t р =20 ° С. Плотность r ацетона при данной температуре равна 792 кг/м 3 . Давление насыщенных паров ацетона р a при t р равно 24,54 кПа.

Объем ацетона, вышедшего из напорного трубопровода, V н.т составляет

где t - расчетное время отключения трубопровода, равное 300 с (при ручном отключении).

Объем ацетона, вышедшего из отводящего трубопровода V от составляет

Объем ацетона, поступившего в помещение

V a = V ап + V н.т + V от = 3 + 6,04 · 10 -1 + 1,96 · 10 -3 = 6,600 м 3 .

Исходя из того, что 1 л ацетона разливается на 1 м 2 площади пола, расчетная площадь испарения S р = 3600 м 2 ацетона превысит площадь пола помещения. Следовательно, за площадь испарения ацетона принимается площадь пола помещения, равная 50 м 2 .

Интенсивность испарения равна:

W исп = 10 -6 · 3,5 · 24,54 = 0,655 · 10 -3 кг/(с · м 2).

Масса паров ацетона, образующихся при аварийной разгерметизации аппарата т, кг, будет равна

т = 0,655 · 10 -3 · 50 · 3600 = 117,9 кг.

2 Определить массу газообразного этилена, образующегося при испарении пролива сжиженного этилена в условиях аварийной разгерметизации резервуара.

Данные для расчета

Изотермический резервуар сжиженного этилена объемом V и.р.э = 10000 м 3 установлен в бетонном обваловании свободной площадью S об = 5184 м 2 и высотой отбортовки Н об = 2,2 м. Степень заполнения резервуара a = 0,95.

Ввод трубопровода подачи сжиженного этилена в резервуар выполнен сверху, а вывод отводящего трубопровода снизу.

Диаметр отводящего трубопровода d тp = 0,25 м. Длина участка трубопровода от резервуара до автоматической задвижки, вероятность отказа которой превышает 10 -6 в год и не обеспечено резервирование ее элементов, L= 1 м. Максимальный расход сжиженного этилена в режиме выдачи G ж.э = 3,1944 кг/с. Плотность сжиженного этилена r ж.э при температуре эксплуатации Т эк = 169,5 К равна 568 кг/м 3 . Плотность газообразного этилена r г.э при Т эк равна 2,0204 кг/м 3 . Молярная масса сжиженного этилена М ж.э = 28 · 10 -3 кг/моль. Мольная теплота испарения сжиженного этилена L иcn при Т эк равна 1,344 · 10 4 Дж/моль. Температура бетона равна максимально возможной температуре воздуха в соответствующей климатической зоне T б = 309 К. Коэффициент теплопроводности бетона l б =1,5Вт/(м· К). Коэффициент температуропроводности бетона а = 8,4 · 10 -8 м 2 /с. Минимальная скорость воздушного потока u min = 0 м/с, а максимальная для данной климатической зоны u max = 5 м/с. Кинематическая вязкость воздуха n в при расчетной температуре воздуха для данной климатической зоны t р = 36 ° С равна 1,64 · 10 -5 м 2 /с. Коэффициент теплопроводности воздуха l в при t р равен 2,74 · 10 -2 Вт/(м · К).

При разрушении изотермического резервуара объем сжиженного этилена составит

Свободный объем обвалования V об = 5184 · 2,2 = 11404,8 м 3 .

Ввиду того, что V ж.э < V об примем за площадь испарения S исп свободную площадь обвалования S об, равную 5184 м 2 .

Тогда массу испарившегося этилена m и.э с площади пролива при скорости воздушного потока u = 5 м/с рассчитывают по формуле (И.2)

Масса m и.э при u = 0 м/с составит 528039 кг.

В таблице представлены теплофизические свойства пара бензола C 6 H 6 при атмосферном давлении.

Даны значения следующих свойств: плотность, теплоемкость, коэффициент теплопроводности, динамическая и кинематическая вязкость, температуропроводность, число Прандтля в зависимости от температуры. Свойства даны в диапазоне температуры от .

По данным таблицы видно, что значения плотности и числа Прандтля при повышении температуры газообразного бензола уменьшаются. Удельная теплоемкость, теплопроводность, вязкость и температуропроводность при нагревании пара бензола увеличивают свои значения.

Следует отметить, что плотность пара бензола при температуре 300 К (27°С) составляет 3,04 кг/м 3 , что намного ниже этого показателя у жидкого бензола (см. ).

Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 Не забудьте разделить на 1000.

Теплопроводность пара бензола

В таблице даны значения теплопроводности пара бензола при атмосферном давлении в зависимости от температуры в интервале от 325 до 450 К.
Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 10 4 . Не забудьте разделить на 10000.

В таблице приведены значения давления насыщенного пара бензола в диапазоне температуры от 280 до 560 К. Очевидно, что при нагревании бензола давление его насыщенных паров увеличивается.

Источники:
1.
2.
3. Волков А. И., Жарский И. М. Большой химический справочник. — М: Советская школа, 2005. — 608 с.