Как определить по диаграмме. I-d диаграмма для начинающих (ID диаграмма состояния влажного воздуха для чайников)

Влажный воздух широко используется в различных областях промышленности, в том числе и на железнодорожном транспорте в системах нагрева, охлаждения, осушения или увлажнения воздуха. В последнее время перспективным направлением развития техники кондиционирования воздуха считается внедрение так называемого косвенно-испарительного метода охлаждения. Это объясняется тем, что такие устройства не содержат искусственно синтезированных хладагентов, кроме этого они бесшумны и долговечны, поскольку в них отсутствуют движущие и быстро изнашиваемые элементы. Для проектирования таких устройств необходимо располагать информацией о закономерностях теплотехнических процессов протекающих во влажном воздухе при изменении его параметров.

Теплотехнические расчеты, связанные с использованием влажного воздуха выполняются с помощью i-d диаграммы (см. рисунок 4), предложенной в 1918 году профессором А.К. Рамзиным.

Эта диаграмма выражает графическую зависимость основных параметров воздуха-температуры, относительной влажности, парциального давления, абсолютной влажности и теплосодержания при заданном барометрическом давлении. Для ее построения на вспомогательной оси 0-d в масштабе, с интервалом, соответствующим 1 грамму откладывают влагосодержание d и через полученные точки проводят вертикальные линии. По оси ординат в масштабе откладывают энтальпию i с интервалом в 1 кДж/кг сухого воздуха. При этом вверх от точки 0, соответствующей температуре влажного воздуха t=0 0 С (273К) и влагосодержанию d=0, откладывают положительные, а вниз – отрицательные значения энтальпии.

Через полученные точки на оси ординат проводят линии постоянных энтальпий под углом 135 0 к оси абсцисс. На полученную таким образом сетку наносят линии изотерм и линии постоянных относительных влажностей. Для построения изотерм воспользуемся уравнением для теплосодержания влажного воздуха:

Его можно записать в следующем виде:

, (1.27)

где t и С св – соответственно температура (0 С) и теплоемкость сухого воздуха (кДж/кг 0 С);

r – скрытая теплота парообразования воды (в расчетах принимается

r = 2,5кДж/г).

Если принять, что t=const, то уравнение (1.27) будет прямой линией, а это означает, что изотермы в координатах i–d представляют собой прямые линии и для их построения необходимо определить только две точки, характеризующие два крайних положения влажного воздуха.

Рисунок 4. i – d диаграмма влажного воздуха

Для построения изотермы соответствующей значению температуры t=0°С (273K) вначале с помощью выражения (1.27) определим положение координаты теплосодержания (i 0) для абсолютно сухого воздуха (d=0). После подстановки соответствующих значений параметров t=0 0 C (273K) и d=0 г/кг выражение (1.27) видно, что точка (i 0) лежит в начале координат.

. (1.28)

Для полностью насыщенного воздуха при температуре t=0°С (273K) и =100% из справочной литературы, например находим соответствующее значение влагосодержания d 2 =3,77 г/кг сух. возд. и из выражения (1.27) находим соответствующее значение энтальпии: (i 2 = 2,5 кДж/г). В системе координат i-d наносим точки 0 и 1 и через них проводим прямую линию, которая и будет изотермой влажного воздуха при температуре t=0 0 С (273K) .

Аналогичным путем можно построить любую другую изотерму, например, для температуры плюс 10 0 С(283). При этой температуре и =100% по справочным данным находим парциальное давление полностью насыщенного воздуха равное Р п =9,21 мм. рт. ст. (1,23кПа), далее и из выражения (1.28) находим значение влагосодержание (d=7,63 г/кг), а из выражения (1.27) определим значение теплосодержание влажного воздуха (i=29,35 кДж/г).

Для абсолютно сухого воздуха ( =0%), при температуре T=10 о С (283К) после подстановки значений в выражение (1.27) получим:

i= 1,005*10= 10,05 кДж/г.

На диаграмме i-d находим координаты соответствующих точек, и проведя через них прямую получим линию изотермы для температуры плюс 10 0 С (283К). Аналогичным образом строится семейство других изотерм, а соединив все изотермы для =100% (на линии насыщения) получим линию постоянной относительной влажности =100%.

В результате выполненных построений получена диаграмма i-d, которая приведена на рисунке 4. Здесь на оси ординат нанесены значения температур влажного воздуха, на оси абсцисс - значения влагосодержания. Наклонные линии показывают величины теплосодержания (кДж/кг). Кривые, расходящиеся пучком из центра координат, выражают величины относительной влажности φ.

Кривая φ=100% называется кривой насыщения; выше ее водяные пары в воздухе находятся в перегретом состоянии, а ниже - в состоянии перенасыщения. Наклонная линия, идущая от центра координат, характеризует парциальное давление водяного пара. Величины парциального давления нанесены справа на оси ординат.

Пользуясь диаграммой i - d, можно при заданной температуре и относительной влажности воздуха определить остальные его параметры - теплосодержание, влагосодержание и парциальное давление. Например, для заданных температуры плюс 25°С (273K) и относительной влажности и φ=40% на диаграмме i - d находим точку А. Перемещаясь от нее по вертикали вниз, на пересечении с наклонной линией находим парциальное давление Р п =9 мм рт. ст. (1,23кПа) и далее на оси абсцисс - влагосодержание d А =8 г/кг сухого воздуха. На диаграмме также видно, что точка А лежит на наклонной линии, выражающей теплосодержание i А = 11 кДж/кг сухого воздуха.

Процессы, протекающие при подогреве или охлаждении воздуха без изменения влагосодержания, изображаются на диаграмме вертикальными, прямыми линиями. На диаграмме видно, что при d=const в процессе нагревания воздуха относительная влажность его уменьшается, а при охлаждении - увеличивается.

С помощью диаграммы i – d можно определять параметры смешиваемых частей влажного воздуха для этого строят так называемый угловой коэффициент луча процесса. Построение луча процесса (см. рисунок 5) начинается от точки с известными параметрами, в данном случае это точка 1.

Диаграмма влажного воздуха дает графическое представление о связи параметров влажного воздуха и является основной для определения параметров состояния воздуха и расчета процессов тепловлажностной обработки.

В I-d диаграмме (рис. 2) по оси абсцисс откладывается влагосодержание d г/кг сухого воздуха, а по оси ординат − энтальпия I влажного воздуха. На диаграмме нанесены вертикальные прямые постоянного влагосодержания (d = const). За начало отсчета принята точка О, в которой t = 0 °С, d = 0 г/кг и, следовательно, I = 0 кДж/кг. При построении диаграммы использована косоугольная система координат для увеличения области ненасыщенного воздуха. Угол между направлением осей 135° или 150°. Для удобства пользования под углом 90º к оси энтальпий проводят условную ось влагосодержаний. Диаграмма строится для постоянного барометрического давления. Пользуются I-d диаграммами, построенными для атмосферного давления р б = 99,3 кПа (745 мм.рт.ст) и атмосферного давления р б = 101,3 кПа (760 мм.рт.ст).

На диаграмму нанесены изотермы (t с = const) и кривые относительной влажности (φ = const). Уравнение (16) показывает, что изотермы в I-d диаграмме − прямые линии. Все поле диаграммы линией φ = 100% разделено на две части. Выше этой линии расположена область ненасыщенного воздуха. На линии φ = 100% находятся параметры насыщенного воздуха. Ниже этой линии располагаются параметры состояния насыщенного воздуха, содержащего взвешенную капельную влагу (туман).

Для удобства работы в нижней части диаграммы строится зависимость, наносят линию парциального давления водяного пара р п от влагосодержания d. Шкала давлений располагается с правой стороны диаграммы. Каждая точка на I-d диаграмме соответствует определенному состоянию влажного воздуха.


Определение параметров влажного воздуха по I-d диаграмме. Метод определения параметров показан на рис. 2. Положение точки А определяется двумя параметрами, например, температурой t А и относительной влажностью φ А. Графически определяем: температуру сухого термометра t с, влагосодержание d А, энтальпию I А. Температура точки росы t р определяется как температура точки пересечения линии d А = const с линией φ = 100 % (точка Р). Параметры воздуха в состоянии полного насыщения влагой определяются на пересечении изотермы t А с линией φ = 100 % (точка Н).

Процесс увлажнения воздуха без подвода и отвода теплоты будет проходить при постоянной энтальпии I А = const (процесс А-М). На пересечения линии I А = const с линией φ = 100 % (точка М) находим температуру мокрого термометра t м (линия постоянной энтальпии практически совпадает с изотермой
t м = const). В ненасыщенном влажном воздухе температура мокрого термометра меньше температуры сухого термометра.

Парциальное давление водяного пара p П находим, проведя из точки А линию d А = const до пересечения с линией парциального давления.

Разность температур t с – t м = Δt пс называется психрометрической, а разность температур t с – t р гигрометрической.

Основные свойства влажного воздуха можно с достаточной для технических расчетов точностью определить при помощи i-х - диаграммы, разработанной Л.K. Рамзиным (1918 г.). Диаграмма i-х (рис. 1, 2) построена для постоянного давления р = 745 мм рт. ст. (около 99 кН/м 2), которое, по многолетним статистическим данным, принято как среднегодовое для центральных районов бывшего СССР.

На оси ординат отложены в определенном масштабе энтальпии i, а на наклонной оси абсцисс - влагосодержание х. Угол между осями координат - 135°, но для удобства пользования значения влагосодержания х спроектированы на вспомогательную ось, перпендикулярную оси ординат.

На диаграмме имеются линии:

  • · постоянного влагосодержания (х = const) - вертикальные прямые, параллельные оси ординат;
  • · постоянной энтальпии (i = const) - прямые, параллельные оси абсцисс, т.е. направленные под углом 135° к оси ординат;
  • · постоянных температур, или изотермы (t = const);
  • · постоянной относительной влажности (ц = const);
  • · парциальных давлений водяного пара (р) во влажном воздухе, значения которых отложены в масштабе на правой оси ординат диаграммы.

Рис. 1. Диаграмма влажного воздуха i - х (а)

Линии постоянных температур, или изотермы, задаются при данной температуре t = const двумя произвольными значениями х 1 и х 2 . Затем вычисляют значение i, соответствующее каждому значению х. Полученные точки (х 1 , i 1) и (х 2 , i 2) наносят на диаграмму и проводят через них прямую, которая является изотермой t = const.

Линии постоянной относительной влажности выражают зависимость между х и р при ц = const. Принимая при данном ц = const несколько произвольных температур t 1 , t 2 , t 3 для каждой из них находят по таблицам водяного пара соответствующие значения р и вычисляют отвечающее ему значение х. Точки с известными координатами (t 1 , х 1), (t 2 , х 2), (t 3 , х 3) и т.д. соединяют кривой, которая является линией ц = const.

Рис. 2.

При температурах t > 99,4 °С величина ц не зависит от температуры (так как при этом р = 745 мм рт. ст., для которого построена диаграмма) и практически является величиной постоянной. Поэтому линии ц = const при 99,4 °С имеют резкий перелом и идут почти вертикально вверх.

Линия ц = 100 % соответствует насыщению воздуха водяным паром при данной температуре. Выше этой линии расположена рабочая площадь диаграммы, отвечающая ненасыщенному влажному воздуху, используемому в качестве сушильного агента.

Линии парциального давления, проведенные в нижней части диаграммы, позволяют определить парциальное давление, если известно положение точки на диаграмме, соответствующей состоянию воздуха.

По диаграмме i-x по любым двум известным параметрам влажного воздуха можно найти точку, характеризующую состояние воздуха, и определить все его остальные параметры.

Используя систему уравнений, включающую зависимости 4.9, 4.11, 4.17, а также функциональную связь Р н = f (t ), Л.К. Рамзин построил J -d диаграмму влажного воздуха, которая широко применяется в расчетах систем вентиляции и кондиционирования воздуха. Эта диаграмма представляет собой графическую зависимость между основными параметрами воздуха t , , J , d и Р п при определенном барометрическом давлении воздуха Р б.

Построение J -d диаграммы подробно описано в работах .

Состояние влажного воздуха характеризуется точкой, нанесенной на поле J -d диаграммы, ограниченном линией d = 0 и кривой  = 100%.

Положение точки задается любыми двумя параметрами из пяти, указанных выше, а также температурами точки росы t р и мокрого термометра t м . Исключение составляют сочетания d - Р п и d - t р, т.к. каждому значению d соответствует только одно табличное значение Р п и t р, и сочетание J - t м.

Схема определения параметров воздуха для заданной точки 1 приведена на рис. 1.

Пользуясь J -d диаграммой в прил. 4 и схемой на рис. 1, решим конкретные примеры для всех 17 возможных сочетаний заданных начальных параметров воздуха, конкретные значения которых указаны в табл. 7.

Схемы решений и полученные результаты показаны на рис. 2.1 ... 2.17. Известные параметры воздуха выделены на рисунках утолщенными линиями.

5.2. Угловой коэффициент луча процесса на j-d диаграмме

Возможность быстрого графического определения параметров влажного воздуха является важным, но не основным фактором при использовании J -d диаграммы.

В результате нагревания, охлаждения, осушения или увлажнения влажного воздуха изменяется его тепло-влажностное состояние. Процессы изменения изображаются на J -d диаграмме прямыми линиями, которые соединяют точки, характеризующие начальные и конечные состояния воздуха.

Рис. 1. Схема определения параметров влажного воздуха на J -d диаграмме

Таблица 7

Номер рисунка

Известные параметры воздуха

t 1 , °C

кДж/кг с.в.

Р п1 , кПа

t р1 , °C

t м1 , °C

Эти линии называются лучами процессов изменения состояния воздуха. Направление луча процесса на J -d диаграмме определяется угловым коэффициентом . Если параметры начального состояния воздуха J 1 и d 1 , а конечного – J 2 и d 2 , то угловой коэффициент выражается отношением J /d , т.е.:

. (5.1)

Величина углового коэффициента измеряется в кДж/кг влаги.

Если в уравнении (29) числитель и знаменатель умножить на массовый расход обрабатываемого воздуха G , кг/ч, то получим:

, (5.2)

где Q п - полное количество тепла, переданное при изменении состояния воздуха, кДж/ч;

W - количество влаги, переданное в процессе изменения состояния воздуха, кг/ч.

В зависимости от соотношения J и d угловой коэффициент  может изменять свой знак и величину от 0 до .

На рис. 3 показаны лучи характерных изменений состояния влажного воздуха и соответствующие им значения углового коэффициента.

1. Влажный воздух с начальными параметрами J 1 и d 1 нагревается при постоянном влагосодержании до параметров точки 2, т.е. d 2 = d 1 , J 2 > J 1 . Угловой коэффициент луча процесса равен:

Рис. 3. Угловой коэффициент на J -d диаграмме

Такой процесс осуществляется, например, в поверхностных воздухонагревателях, когда температура и энтальпия воздуха возрастают, относительная влажность уменьшается, но влагосодержание остается постоянным.

2. Влажный воздух одновременно нагревается и увлажняется и приобретает параметры точки 3. Угловой коэффициент луча процесса  3 > 0. Такой процесс протекает, когда приточный воздух ассимилирует тепло- и влаговыделения в помещении.

3. Влажный воздух увлажняется при постоянной температуре до параметров точки 4,  4 > 0. Практически такой процесс осуществляется при увлажнении приточного или внутреннего воздуха насыщенным водяным паром.

4. Влажный воздух увлажняется и нагревается с повышением энтальпии до параметров точки 5. Так как энтальпия и влагосодержание воздуха увеличиваются, то  5 > 0. Обычно такой процесс происходит при непосредственном контакте воздуха с отепленной водой в камерах орошения и в градирнях.

5. Изменение состояния влажного воздуха происходит при постоянной энтальпии J 6 = J 1 = const. Угловой коэффициент такого луча процесса  6 = 0, т.к. J = 0.

Процесс изоэнтальпийного увлажнения воздуха циркуляционной водой широко используется в системах кондиционирования. Он осуществляется в камерах орошения или в аппаратах с орошаемой насадкой.

При контакте ненасыщенного влажного воздуха с мелкими каплями или тонкой пленкой воды без отвода или подвода тепла извне, вода в результате испарения увлажняет и охлаждает воздух, приобретая температуру мокрого термометра.

Как следует из уравнения 4.21, в общем случае угловой коэффициент луча процесса при изоэнтальпийном увлажнении не равен нулю, т.к.

,

где с w = 4,186 - удельная теплоемкость воды, кДж/кг°С.

Действительный изоэнтальпийный процесс, при котором  = 0 возможен только при t м = 0.

6. Влажный воздух увлажняется и охлаждается до точки 7. В этом случае угловой коэффициент  7 < 0, т.к. J 7 – J 1  0, a d 7 – d 1 > 0. Такой процесс протекает в форсуночных камерах орошения при контакте воздуха с охлажденной водой, имеющей температуру выше точки росы обрабатываемого воздуха.

7. Влажный воздух охлаждается при постоянном влагосодержании до параметров точки 8. Так как d = d 8 – d 1 = 0, a J 8 – J 1 < 0, то  8 = -. Процесс охлаждения воздуха при d = const происходит в поверхностных воздухоохладителях при температуре поверхности теплообмена выше температуры точки росы воздуха, когда нет конденсации влаги.

8. Влажный воздух охлаждается и осушается до параметров точки 9. Выражение углового коэффициента в этом случае имеет вид:

Охлаждение с осушкой происходит в камерах орошения или в поверхностных воздухоохладителях при контакте влажного воздуха с жидкой или твердой поверхностью, имеющей температуру ниже точки росы.

Отметим, что процесс охлаждения с осушкой при непосредственном контакте воздуха и охлажденной воды ограничен касательной, проведенной из точки 1 к кривой насыщения  = 100%.

9. Глубокая осушка и охлаждение воздуха до параметров точки 10 происходит при прямом контакте воздуха с охлажденным абсорбентом, например, раствором хлористого лития в камерах орошения или в аппаратах с орошаемой насадкой. Угловой коэффициент  10 > 0.

10. Влажный воздух осушается, т.е. отдает влагу, при постоянной энтальпии до параметров точки 11. Выражение углового коэффициента имеет вид

.

Такой процесс можно осуществить с помощью растворов абсорбентов или твердых адсорбентов. Заметим, что реальный процесс будет иметь угловой коэффициент  11 = 4,186t 11 , где t 11 - конечная температура воздуха по сухому термометру.

Из рис. 3. видно, что все возможные изменения состояния влажного воздуха располагаются на поле J -d диаграммы в четырех секторах, границами которых являются линии d = const и J = const. В секторе I процессы происходят с увеличением энтальпии и влагосодержания, поэтому значения  > 0. В секторе II происходит осушение воздуха с увеличением энтальпии и значения  < 0. В секторе III процессы идут с уменьшением энтальпии и влагосодержания и  > 0. В секторе IV происходят процессы увлажнения воздуха с понижением энтальпии, поэтому  < 0.


При более строгом определении под следует пони­мать отношение парциальных давлений водяных паров рп, находящихся в ненасыщенном влажном воздухе к их парциальному давлению в насыщенном воздухе при той же температуре

Для об­ласти температур, характерных для кондиционирования воздуха


Плотность влажного воздуха ρ равна сумме плотностей сухого воздуха и водяного пара

где - плотность сухого воздуха при данных температуре и давлении, кг/м 3 .

Для вычисления плотности влажного воздуха можно воспользоваться другой формулой:

Из уравнения видно, что с увеличением парциального давления пара при неизменных давлении p (барометрическом) и температуре T плотность влажного воздуха уменьшается. Поскольку это уменьшение незначительно, на практике принимают .

Степень насыщения влажного воздуха ψ - отношение его влагосодержания d к влагосодержанию насыщенного воздуха при той же темпе­ратуре: .

Для насыщенного воздуха .

Энтальпия влажного воздуха I (кДж/кг) - количество тепла, содержащееся в воздухе, отне­сенное к 1кг сухого или (1+d) кг влажного воздуха.

За нулевую точку принимают энтальпию сухого воздуха (d = 0) с температурой t = 0°С. Поэтому энтальпия влажного воздуха может иметь положительные и отрицательные значения.

Энтальпия сухого воздуха

где - массовая теплоемкость сухого воздуха.

Энтальпия водяного пара включает количество теплоты, необходимое для превращения воды в пар при t =0 o C и количество теплоты, затраченной на нагрев полученного пара до температуры t o C. Энтальпия d кг водяного пара содержащегося в 1кг сухого воздуха: ,

2500 - скрытая теплота парообразования (испарения) воды при t=0 o C;

- массовая теплоемкость водяных паров.

Энтальпия влажного воздуха равна сумме энтальпии 1кг сухого воздуха и энтальпии d кг водяных паров:

где - теплоемкость влажного воздуха, отнесенная к 1 кг сухого воздуха.

Когда воздух находится в состоянии тумана, в нем могут быть взвешенные капли влаги d вод и даже кристал­лы льда d л . Энтальпия такого воздуха в общем виде

Энтальпия воды =4.19t , энтальпия льда .

При температуре больше нуля градусов (t >0°C) в воздухе будет капельная влага, при t < 0°С - кристаллы льда.

Температура точки росы -температура воздуха, при которой в изобарном процессе охлаж­дения парциальное давление водяного пара р п становится рав­ным давлению насыщения . При этой температуре начинается выпадение влаги из воздуха.

Т.е. точкой росы называют ту температуру, при которой имеющийся в воздухе водяной пар при своей неизменной плотности становится вследствие охлаждения воздуха насыщенным паром (j =100%). Для приведенных выше примеров (см. табл. 2.1), когда при 25 о С абсолютная влажность j становится 50 %, точкой росы будет температура около 14 о С. А когда при 20 о С абсолютная влажность j становится 50 %, точкой росы будет температура около 9 о С.

Человек при высоких значениях точки росы чувствует себя некомфортно (см.табл.2.2).

Таблица 2.2 – Ощущения человека при высоких значениях точки росы

В районах с континентальным климатом условия с точкой росы между 15 и 20 °C доставляют некоторый дискомфорт, а воздух с точкой росы выше 21 °C воспринимается как душный. Нижняя точка росы, менее 10 °C, коррелирует с более низкой температурой окружающей среды, и тело требует меньшего охлаждения. Нижняя точка росы может пойти вместе с высокой температурой только при очень низкой относительной влажности.

Диаграмма d- I влажного воздуха

Расчет и анализ процессов тепловлажностной обработки воздуха по вышеприведенным зависимостям сложен. Для расчета процессов, происходящих с воздухом при изменении его состоя­ния, используют тепловую диаграмму влажного воздуха в коор­динатах d-I (влагосодержание - энтальпия), которая была предложена нашим соотечественником профессором Л.К.Рамзиным в 1918г.

Л. К. Рамзин (1887-1948) - советский инженер-теплотехник, изобретатель

прямоточного котла. http://ru.wikipedia.org/wiki/Рамзин

Она получила широкое распространение у нас и за гра­ницей. Диаграмма d-I влажного воздуха графически связывает все параметры, определяющие тепловлажностное состояние воздуха: энтальпию, влагосодержание, температуру, относительную влажность, парциальное давление водяных паров.

Построение диаграммы основано на зависимости .

Чаще всего диаграмма d-I строится для давления воздуха, равного 0,1013 МПа (760 мм рт.ст.). Встречаются диаграммы и для других барометрических давлений.

Ввиду того, что барометрическое давление на уровне моря изменяется от 0,096 до 0,106 МПа (720 - 800 мм рт.ст.), рас­четные данные по диаграмме следует рассматривать как сред­ние.

Диаграмму строят в косоугольной системе координат (под 135°). При этом диаграмму становится удобной для графических построений и для расчетов процессов кондиционирования воздуха, поскольку расширяется область ненасыщенного влажного воздуха. Однако в целях сокращения размеров диаграммы и удобства использования зна­чения d сносят на условную ось, расположенную под 90° к оси I .

Диаграмма d-I изображена на рисунке 1. Поле диаграммы разбито линиями постоянных значений энтальпии I = const и влагосодержания d = const. На него нанесены также линии постоянных значений температуры t = const, которые не параллельны между собой - чем выше температура влажного воздуха, тем больше отклоняются вверх его изотермы. Кроме линий постоянных значений I, d, t , на поле диаграммы нанесены линии постоянных значений относительной влажности воздуха φ = const. Иногда наносят линию парци­альных давлений водяного пара р п и линии других параметров.

Рисунок 1 – Тепловая диаграмма d-I влажного воздуха

Существенное значение имеет следующее свойст­во диаграммы. Если воздух изме­нил свое состоя­ние от точки а до точки б , без­различно по како­му процессу, то на диаграмме d-I это изменение мож­но представить в виде отрезка пря­мой аб . При этом приращению энтальпии возду­ха будет соот­ветствовать отре­зок бв=I б -I а . Изотерма, прове­денная через точ­ку а , разделит отрезок бв на две части:

отрезок бд , представляющий из­менение доли ощу­тимого тепла (за­паса тепловой энергии, измене­ние которой приводит к изменению температуры тела): .

отрезок дв , определяющий в масштабе изменение теплоты парообразования (изменение этой теплоты не вызывает изменения температуры тела): .

Отрезок соответствует изменению влагосодержания воздуха . Точку росы находят, опустив перпенди­куляр из точки состояния воздуха (например из точки б ) на условную ось d до пересечения с линией насыщения (φ=100%). На рис. 2.6 К-точка росы для воздуха, начальное состояние которого определяла точка б .

Направление процесса, происходящего в воздухе, характеризуется изменениями энтальпии I и влагосодержания d .