Как пользоваться диаграммой id. Состояния воздуха и процессы на «i, d» – диаграмме влажного воздуха

Учитывая, что является основным объектом вентиляционного процесса, в области вентиляции приходится часто определять те или другие параметры воздуха. Чтобы избежать многочисленных вычислений, их определяют обычно по специальной диаграмме, которая носит название Id диаграммы. Она позволяет быстро определить все параметры воздуха по двум известным. Использование диаграммы позволяет избежать вычислений по формулам и наглядно отобразить вентиляционный процесс. Пример Id диаграммы приведен на следующей странице. Аналогом Id диаграммы на западе является диаграмма Молье или психрометрическая диаграмма.

Оформление диаграммы в принципе может быть несколько различным. Типовая общая схема Id диаграммы показана ниже на рисунке 3.1. Диаграмма представляет из себя рабочее поле в косоугольной системе координат Id, на котором нанесено несколько координатных сеток и по периметру диаграммы – вспомогательные шкалы. Шкала влагосодержаний обычно располагается по нижней кромке диаграммы, при этом линии постоянных влагосодержаний представляют вертикальные прямые. Линии постоянных представляют параллельные прямые, обычно идущие под углом 135° к вертикальным линиям влагосодержаний (в принципе, углы между линиями энтальпии и влагосодержания может быть и другим). Косоугольная система координат выбрана для того, чтобы увеличить рабочее поле диаграммы. В такой системе координат линии постоянных температур представляют из себя прямые линии, идущие под небольшим наклоном к горизонтали и слегка расходящиеся веером.

Рабочее поле диаграммы ограничено кривыми линиями равных относительных влажностей 0% и 100%, между которыми нанесены линии других значений равных относительных влажностей с шагом 10%.

Шкала температур обычно располагается по левой кромке рабочего поля диаграммы. Значения энтальпий воздуха нанесены обычно под кривой Ф= 100. Значения парциальных давлений иногда наносят по верхней кромке рабочего поля, иногда по нижней кромке под шкалой влагосодержаний, иногда по правой кромке. В последнем случае на диаграмме добавочно строят вспомогательную кривую парциальных давлений.

Определение параметров влажного воздуха на Id диаграмме.

Точка на диаграмме отражает некое состояние воздуха, а линия – процесс изменения состояния. Определение параметров воздуха, имеющего некое состояние, отображаемое точкой А, показано на рисунке 3.1.

hd-диаграмма влажного воздуха (рис. 14.1), предложенная в 1918 г.

Рис.14.1. hd-диаграмма влажного воздуха

Л. К. Рамзиным, широко используется для решения практических задач в тех областях, где рабочим телом служит влажный воздух. По оси ординат откладывают энтальпию h, кДж/кг влажного воздухa, а по оси абсцисс влагосодержание d,г/кг с.в. Для удобства (сокращение площади диаграммы) ось абсцисс направлена под углом 135° к оси ординат. На данной диаграмме вместо наклонной оси абсцисс проведена горизонтальная линия, на которой нанесены действительные значения d.На hd-диаграмме линии h = const - это циклонные линии, а линии d = const - вертикальные прямые.

Из уравнения

следует, что в координатах hd изотермы изображаются прямыми линиями. Кроме того, на диаграмму наносят кривые φ = const.

Кривая φ = 100%делит поле на две области и является своего рода пограничной кривой: φ < 100% характеризует область ненасы-щенного влажного воздуха (в воздухе содержится перегретый пар); φ > 100% - область, в которой влага находится в воздухе час-тично в капельном состоянии;

φ - 100% характеризует насыщен-ный влажный воздух.

За начало отсчета параметров влажного воздуха выбирают точку 0,для которой Т = 273,15 К, d = 0, h = 0.

Любая точка на hd-диаграмме определяет физическое состоя-ние воздуха. Для этого должны быть заданы два параметра (например, φ и t или h u d). Изменение состояния влажного воз-духа изобразится на диаграмме линией процесса. Рассмотрим ряд примеров.

1) Процесс нагревания воздуха происходит при постоянном влагосодержании, так как количество пара в воздухе в данном случае не изменяется. На hd-диаграмме этот процесс изображается лини-ей 1-2 (рис.14.2). В данном процессе повышаются температура и энтальпия воздуха, и уменьшается его относительная влажность.

Рис. 14.2 Изображение на hd- диаграмме характерных процессов изменения состояния воздуха

2) Процесс охлаждения воздуха на участке над кривой φ-100%также протекает при постоянном влагосодержании (процесс 1-5). Если продолжать процесс охлаждения до точки 5" -неположенной на кривой φ-100%,то в этом состоянии влажный воздух будет насыщенным. Температура в точке 5 есть температу-ра точки росы. Дальнейшее охлаждение воздуха (ниже точки 5) приводит к конденсации части водяного пара.

3) В процессе адиабатного осушения воздуха конденсация влага
происходит за счет теплоты влажного воздуха без внешнего тепло-обмена. Этот процесс протекает при постоянной энтальпии (процесс 1-7), причем влагосодержание воздуха уменьшается, а температура его увеличивается.

4) Процесс адиабатного увлажнения воздуха, сопровождающий-ся увеличением влагосодержания воздуха и уменьшением его темпе-ратуры, изображен на диаграмме линией 1-4.

Процессы адиабатного увлажнения и осушения воздуха широко используются для обеспечения заданных параметров микроклима-та в сельскохозяйственных производственных помещениях.

5) Процесс осушения воздуха при постоянной температуре изображается линией 1-6, а процесс увлажнения воздуха при постоян-ной температуре - линией 1-3.

После прочтения данной статьи, рекомендую прочитать статью про энтальпию , скрытую холодопроизводительность и определение количества конденсата, образующегося в системах кондиционирования и осушения :

Доброго времени суток уважаемые начинающие коллеги!

В самом начале своего профессионального пути я наткнулся на данную диаграмму. При первом взгляде она может показаться страшноватой, но если разобраться в главных принципах, по которым она работает, то можно её и полюбить:D. В быту она называется и-д диаграмма.

В данной статье я попытаюсь просто(на пальцах) объяснить основные моменты, чтобы вы потом отталкиваясь от полученного фундамента самостоятельно углубились в данную паутину характеристик воздуха.

Примерно так она выглядит в учебниках. Как-то жутковато становится.


Я уберу все то лишнее, что не будет мне нужным для моего объяснения и представлю и-д диаграмму в таком виде:

(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Все равно еще не совсем понятно, что это такое. Разберем её на 4 элемента:

Первый элемент - влагосодержание (D или d). Но прежде чем я начну разговор об влажности воздуха в целом, я бы хотел кое о чем с вами договориться.

Давайте договоримся “на берегу” сразу об одном понятии. Избавимся от одного прочно засевшего в нас (по крайней мере, в меня) стереотипа о том, что такое пар. С самого детства мне показывали на кипящую кастрюлю или чайник и говорили, тыкая пальцем на валящий из сосуда “дым”: “ Смотри! Вот это пар”. Но как многие, дружащие с физикой люди, мы должны понимать, что “Водяной пар — газообразное состояние воды . Не имеет цвета , вкуса и запаха”. Это всего лишь, молекулы H2O в газообразном состоянии, которых не видно. А то что мы видим, валящее из чайника - это смесь воды в газообразном состоянии(пар) и “капелек воды в пограничном состоянии между жидкостью и газом”, вернее видим мы последнее (так же, с оговорками, можно назвать то что мы видим - туманом). В итоге мы получаем, что в данный момент, вокруг каждого из нас находится сухой воздух (смесь кислорода, азота…) и пар (H2O).

Так вот, влагосодержание говорит нам о том, сколько этого пара присутствует в воздухе. На большинстве и-д диаграмм данная величина измеряется в [г/кг], т.е. сколько грамм пара(H2O в газообразном состоянии) находится в одном килограмме воздуха (1 кубический метр воздуха в вашей квартире весит около 1,2 килограмма). В вашей квартире для комфортных условий в 1 килограмме воздуха должно быть 7-8 грамм пара.

На и-д диаграмме влагосодержание изображается вертикальными линиями, а информация о градации расположена в нижней части диаграммы:


(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Второй важный для понимания элемент - температура воздуха (T или t). Думаю здесь ничего объяснять не нужно. На большинстве и-д диаграмм данная величина измеряется в градусах Цельсия [°C]. На и-д диаграмме температура изображается наклонными линиями, а информация о градации расположена в левой части диаграммы:

(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Третий элемент ИД-диаграммы - относительная влажность (φ ). Относительная влажность, это как раз та влажность, о которой мы слышим из телевизоров и радио, когда слушаем прогноз погоды. Измеряется она в процентах [%].

Возникает резонный вопрос: “Чем отличается относительная влажность от влагосодержания?” На данный вопрос я отвечу поэтапно:

Первый этап:

Воздух способен вмещать в себя определенное количество пара. У воздуха есть определенная “паровая грузоподъемность”. Например, в вашей комнате килограмм воздуха может “взять на свой борт” не больше 15 грамм пара.

Предположим, что в вашей комнате комфортно, и в каждом килограмме воздуха, находящегося в вашей комнате, имеется по 8 грамм пара, а вместить каждый килограмм воздуха в себя может по 15 грамм пара. В итоге мы получаем, что в воздухе находится 53,3% пара от максимально возможного, т.е. относительная влажность воздуха - 53,3%.

Второй этап:

Вместимость воздуха различна при разных температурах. Чем выше температура воздуха, тем больше пара он может в себя вместить, чем ниже температура, тем меньше вместимость.

Предположим, что мы нагрели воздух в вашей комнате обычным нагревателем с +20 градусов до +30 градусов, но при этом количество пара в каждом килограмме воздуха осталось прежним - по 8 грамм. При +30 градусах воздух может “взять себе на борт” до 27 грамм пара, в итоге в нашем нагретом воздухе - 29,6% пара от максимально возможного, т.е. относительная влажность воздуха - 29,6%.

Тоже самое и с охлаждением. Если мы охладим воздух до +11 градусов, то мы получим “грузоподъемность” равную 8,2 грамм пара на килограмм воздуха и относительную влажность равную 97,6%.

Заметим, что влаги в воздухе было одинаковое количество - 8 грамм, а относительная влажность прыгала от 29,6% до 97,6%. Происходило это из-за скачков температуры.

Когда вы зимой слышите о погоде по радио, где говорят, что на улице минус 20 градусов и влажность 80%, то это значит, что в воздухе около 0,3 граммов пара. Попадая к вам в квартиру этот воздух нагревается до +20 и относительная влажность такого воздуха становится равна 2%, а это очень сухой воздух (на самом деле в квартире зимой влажность держится на уровне 10-30% благодаря выделениям влаги из сан-узлов, из кухни и от людей, но что тоже ниже параметров комфорта).

Третий этап:

Что произойдет, если мы опустим температуру до такого уровня, когда “грузоподъемность” воздуха будет ниже, чем количество пара в воздухе? Например, до +5 градусов, где вместимость воздуха равна 5,5 грамм/килограмм. Та часть газообразного H2O, которая не умещается в “кузов” (у нас это 2,5 грамм), начнет превращаться в жидкость, т.е. в воду. В быту особенно хорошо виден этот процесс, когда запотевают окна в связи с тем, что температура стекол ниже, чем средняя температура в комнате, на столько что влаге становится мало места в воздухе и пар, превращаясь в жидкость, оседает на стеклах.

На и-д диаграмме относительная влажность изображается изогнутыми линиями, а информация о градации расположена на самих линиях:


(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Четвертый элемент ID диаграммы - энтальпия (I или i). В энтальпии заложена энергетическая составляющая тепловлажностного состояния воздуха. При дальнейшем изучении (за пределами этой статьи, например в моей статье про энтальпию ) стоит обратить на неё особое внимание, когда речь будет заходить об осушении и увлажнении воздуха. Но пока особого внимания на этом элементе мы заострять не будем. Измеряется энтальпия в [кДж/кг]. На и-д диаграмме энтальпия изображается наклонными линиями, а информация о градации расположена на самом графике (или слева и в верхней части диаграммы).

hd-диаграмма влажного воздуха (рис. 14.1), предложенная в 1918 ᴦ.

Рис.14.1. hd-диаграмма влажного воздуха

Л. К.Рамзиным, широко используется для решения практических задач в тех областях, где рабочим телом служит влажный воздух. По оси ординат откладывают энтальпию h, кДж/кг влажного воздухa, а по оси абсцисс влагосодержание d,г/кг с.в. Для удобства (сокращение площади диаграммы) ось абсцисс направлена под углом 135° к оси ординат. На данной диаграмме вместо наклонной оси абсцисс проведена горизонтальная линия, на которой нанесены действительные значения d.На hd-диаграмме линии h=const -это циклонные линии, а линии d=const -вертикальные прямые.

Из уравнения

следует, что в координатах hd изотермы изображаются прямыми линиями. Вместе с тем, на диаграмму наносят кривые φ=const.

Кривая φ=100%делит поле на две области и является своего рода пограничной кривой: φ<100% характеризует область ненасы­щенного влажного воздуха (в воздухе содержится перегретый пар); φ >100% - область, в которой влага находится в воздухе час­тично в капельном состоянии;

φ-100%характеризует насыщен­ный влажный воздух.

За начало отсчета параметров влажного воздуха выбирают точку 0,для которой Т=273,15 К, d=0, h=0.

Любая точка на hd-диаграмме определяет физическое состоя­ние воздуха. Для этого должны быть заданы два параметра (к примеру, φ и t или h u d).Изменение состояния влажного воз­духа изобразится на диаграмме линией процесса. Рассмотрим ряд примеров.

1) Процесс нагревания воздуха происходит при постоянном влагосодержании, так как количество пара в воздухе в данном случае не изменяется. На hd-диаграмме данный процесс изображается лини­ей 1-2 (рис.14.2). В данном процессе повышаются температура и энтальпия воздуха, и уменьшается его относительная влажность.

Рис. 14.2 Изображение на hd- диа-

грамме характерных процессов

изменения состояния воздуха

2) Процесс охлаждения воздуха на участке над кривой φ-100%также протекает при постоянном влагосодержании (процесс 1-5). В случае если продолжать процесс охлаждения до точки 5" -неположенной на кривой φ-100%,то в данном состоянии влажный воздух будет насыщенным. Температура в точке 5" есть температу­ра точки росы. Дальнейшее охлаждение воздуха (ниже точки 5")приводит к конденсации части водяного пара.

3) В процессе адиабатного осушения воздуха конденсация влага происходит за счёт теплоты влажного воздуха без внешнего тепло­обмена. Этот процесс протекает при постоянной энтальпии (процесс 1-7), причем влагосодержание воздуха уменьшается, а температура его увеличивается.

4) Процесс адиабатного увлажнения воздуха, сопровождающий­ся увеличением влагосодержания воздуха и уменьшением его темпе­ратуры, изображен на диаграмме линией 1- 4.

Процессы адиабатного увлажнения и осушения воздуха широко используются для обеспечения заданных параметров микроклима­та в сельскохозяйственных производственных помещениях.

5) Процесс осушения воздуха при постоянной температуре изображается линией 1-6, а процесс увлажнения воздуха при постоян­ной температуре - линией 1-3.

Hd- диаграмма влажного воздуха - понятие и виды. Классификация и особенности категории "Hd- диаграмма влажного воздуха" 2017, 2018.


  • - Частота резус-фактора крови и RhD негативной аллели гена отличается у разных популяций

    Гемолитическая болезнь новорожденных Гемолитическое заболевание возникает тогда, когда кровь матери и плода - несовместимы. Однако, это расстройство не обозначает, несовместимость между которым антигеном и антителом вызывает заболевание. У плода болезнь возникает... .


  • - Происхождение RHD полиморфизма

    Наследование D антигеннаследуется как одинген(RHD) (на коротком плече первой хромосомы, p36.13-p34.3) с различными аллелями. Если упростить эти процессы, то можно подумать об аллелях, которые являются положительными или отрицательными для антигена D. Ген кодирует белок RhD на... .


  • - Общая хар-ка ОВТВ кожно-резорбтивного действия. Основные представители: Иприт (серный) –HD, Азотистый иприт – HN-1, HN-2, HN-3, Люизит – L

    2. Агрегатное состояние - жидкости 3. Боевое состояние иприта: аэрозоль, пар, капли 4. Медико-тактическая характеристика очага химического поражения: очаг стойкий, замедленного и смертельного действия. 5. Пути поступления в организм – все (ингаляционно, ч/к, в/ж, ч/раны и... .

  • I-d диаграмма влажного воздуха была составлена профессором Леонидом Константиновичем Рамзиным в 1918 г. Она графически связывает 5 параметров влажного воздуха:

    · удельное теплосодержание (энтальпию) I в ,

    · температуру t ,

    · относительную влажность φ ,

    · парциальное давление водяных паров p п .

    Зная любые два из этих параметров, можно определить все остальные.

    Диаграмма составляется для определённого барометрического давления.

    На оси ординат (по вертикали) откладываются значения теплосодержания (энтальпии) I с сухого воздуха, на оси абсцисс (по горизонтали) – влагосодержание d . Линии постоянного теплосодержания (энтальпии) I=const (адиабаты) проходят под углом 135º к оси ординат. Линии постоянного влагосодержания d =const проходят параллельно оси ординат.

    Также наносятся кривые линии постоянных относительных влажностей φ =const и под углом к оси ординат линии изотерм t=const.

    Линии φ =0 и d =0 совпадают, поскольку одинаково характеризуют полное отсутствие влаги в воздухе.

    Через точку пересечения линий с параметрами d =0 и t =0 проходит линия I=0. Значения теплосодержания (энтальпии) выше этой линии – положительные, ниже – отрицательные.

    Линия φ=100% делит диаграмму на две части. Выше линии – область влажного ненасыщенного воздуха. Сама линия φ =100% соответствует насыщенному воздуху – «кривая насыщения ». Ниже линии – область перенасыщенного воздуха, «зона тумана », где вода находится в воздухе во взвешенном состоянии в жидкой или твёрдой фазе.

    I-d диаграммы и схемы определения параметров влажного воздуха для точки А.


    ОСНОВНЫЕ ПРОЦЕССЫ ОБРАБОТКИ ВОЗДУХА
    И ИХ ИЗОБРАЖЕНИЕ НА I-d ДИАГРАММЕ

    При рассмотрении процессов изменения состояния влажного воздуха принимается следующее допущение : свойства воздуха изменяются во всём его объёме одновременно .

    На самом деле это не так, поскольку слои, наиболее близкие к горячим поверхностям, будут иметь температуру более высокую, чем удаленные. Исходя из этого, следует, что в качестве действующих принимаются средние значения параметров воздуха для всего объёма.

    Обработка влажного воздуха – т. е. изменение его параметров, производится специальными устройствами. Ниже приводится описание только назначения и принципа действия таких устройств, без рассмотрения их конструкции, разновидностей и монтажа.

    К элементарным устройствам, являющимся инструментами воздействия на параметры воздуха, относятся:

    · калорифер

    · оросительная (форсуночная) камера (водяной увлажнитель)

    · паровой увлажнитель (парогенератор)

    КАЛОРИФЕР

    Калорифер – этотеплообменноеустройство, изменяющее температуру воздуха без влияния на влагосодержание.

    Сухой нагрев

    Процесс наблюдается только в теплообменнике (калорифере).

    Нагрев воздуха происходит при неизменном влагосодержании (d = const), т. к. влага никуда не уходит, и ниоткуда не добавляется, поскольку обрабатываемый воздух контактирует только с сухой поверхностью теплообменника (калорифера). Изменяется только количество явной теплоты.

    При этом процессе не меняется влагосодержеание, увеличиваются температура и энтальпия, и падает относительная влажность (t 2 >t 1 ,I 2 >I 1 ,φ 2 <φ 1 , d 2 =d 1 =const).

    Теплозатраты на нагрев воздуха в калорифере:

    Q К = ∆I∙G , кДж/ч = , Вт, где

    ∆I – разность теплосодержаний кДж/кг воздуха после и до калорифера соответственно;

    G – расход воздуха, проходящего через калорифер, кг/ч

    Сухое охлаждение

    Охлаждение воздуха происходит при неизменном влагосодержании (d=const), т. к. влага никуда не уходит, и ниоткуда не добавляется, поскольку воздух контактирует только с сухой поверхностью теплообменника (калорифера). Изменяется только количество явной теплоты.

    При этом не меняется влагосодержание, снижается температура и теплосодержание (энтальпия), и возрастает относительная влажность (t 2 <t 1 ,I 2 <I 1 ,φ 2 >φ 1 , d 2 =d 1 =const).

    Затраты холода в калорифере определяются в порядке, аналогичном расчётам теплозатрат. При этом отрицательное значение теплозатрат будет означать затраты не тепла, а холода.

    Точка росы

    Если в ходе сухого охлаждения процесс по линии d = const достигает линии относительной влажности φ = 100%, то при дальнейшем снижении температуры из воздуха начинает выделяется влага, т. к. происходит конденсация паров воды.

    Точка росы – состояние насыщенного воздуха (φ =100%) при данном влагосодержании d . Она находится в точке пересечения линий d =const и φ =100%. Изотерма, проходящая через эту точку, соответствует температуре точки росы t ТР .

    Суть процесса состоит в том, что при охлаждении воздуха, содержащего водяные пары в неизменном количестве, наступает такая температура, при которой пар не может удерживаться воздухом и переходит в жидкое состояние.

    Охлаждение с осушкой

    Если температура поверхности теплообменника (калорифера) t пов ниже температуры точки росы, то при дальнейшем понижении температуры воздуха процесс после достижения точки росы далее проходит уже вдоль линии φ =100%. При этом пар конденсируется и, соответственно – уменьшается влагосодержание воздуха. Также, в ходе процесса уменьшается и энтальпия, а относительная влажность достигает предельно возможной величины 100% (t 2 <t 1 ,I 2 <I 1 ,φ 1 <φ 2 ≈100%, d 2 <d 1 ).

    Количество влаги, удалённой из каждого килограмма воздуха, определяется как разница значений влагосодержания в точке росы и в конечной точке процесса Δd =d 2 d ТР, d ТР = d 1 . Расход воды, сконденсирующейся в калорифере, определяется по формуле: W = G .

    Следует отметить, что на практике процесс может идти не строго по линии φ =100%, а вдоль неё, при значениях φ порядка 95%. При этом конечная температура воздуха будет несколько выше температуры поверхности теплообменника (калорифера).