Какие процессы жизнедеятельности растений фитогормоны. Гормоны растений

Многие знают о существовании регуляторов роста и развития – гормонов – у животных и человека, но не всем известно, что сходные регуляторы – фитогормоны – есть и у растений. Они вырабатываются клетками в ничтожных количествах, разносятся по проводящей системе и не только влияют на процессы роста, цветения, созревания плодов, но могут, передаваясь по воздуху, воздействовать на соседние растения. Но обо всем по порядку.

В конце XIX в. Чарлз Дарвин вместе со своим сыном Фрэнсисом экспериментировал с проростками канареечной травы, которую они, вероятно, выращивали для своих любимых голубей. Наблюдения над голубями позволили Дарвину сформулировать представление об искусственном отборе, которые затем он распространил на дикую природу... Но это совсем другая история.

Каждый видел, как поворачиваются к освещенному окну листья комнатных растений, но задумывались ли вы, почему это происходит? Чарлз и Френсис Дарвины провели несколько опытов, доступных любому школьнику: надевали на верхушки проростков непроницаемые для света колпачки, и поворот листьев растений к свету прекращался. Вывод был сделан такой: если проростки освещаются сбоку, то от верхней их части к нижней передается какой-то стимул, заставляющий последнюю изгибаться. Именно поэтому, если затенить верхушку, сигнал не поступает и листья к свету не поворачиваются.

Понадобилось еще 50 лет, чтобы голландец Ф.Вент выделил это ростовое вещество и назвал его ауксином (от греч. auxs – выращивать, увеличивать). Так был открыт первый фитогормон. Оказалось, что если свет падает на растение с одной стороны, то в освещенной части ауксина вырабатывается меньше, поэтому с затененной стороны клетки растягиваются быстрее и верхушка поворачивается к свету. По этой же причине сильно вытягиваются затененные побеги – вспомните проросший в подвале картофель!

Теперь ауксины (а это целая группа близких по составу веществ) не только хорошо изучены, но и нашли широкое применение в практике. Интересно, что образуются ауксины в основном в верхушках стеблей, молодых листьях, почках, а влияют главным образом на рост и развитие корней. Поэтому ауксины обычно используют для ускорения укоренения черенков – их просто опускают в раствор ауксинов. Только не нужно забывать, что избыток гормона оказывает тормозящее действие на рост и необходимо строго соблюдать дозировку, указанную на упаковке.

Спускаясь от верхушки растения вниз, ауксин подавляет развитие боковых почек, это препятствует ветвлению побега. Если отщипнуть верхушку стебля, гормон перестанет выделяться и боковые почки тронутся в рост. Получится пушистый кустик. Умело обрезая растения, можно создавать «скульптуры» причудливой формы.

Еще одна особенность ауксинов – влияние на образование плодов. Садоводам хорошо известно, что если опыления не произошло, то плоды не завязываются. Но если обработать ауксином цветки томатов, огурцов или баклажанов, то без оплодотворения образуются бессемянные плоды, называемые партенокарпическими.

В середине XX в. была обнаружена новая группа гормонов, названных цитокининами . Американцы Скуг и Миллер разрабатывали методику получения растений из культур их клеток. Это позволило бы из отдельных клеток получать любое количество новых растений, т.е. таким образом можно было бы получать клоны редких экземпляров хризантем, орхидей, лекарственных и других растений.

В начале работы исследователи столкнулись с тем, что клетки в культуре не хотели делиться. Добавление к культуре ауксина вызывало их рост, иногда до гигантских размеров, но для деления клеток было необходимо действие еще какого-то фактора. Сначала удалось экспериментальным путем подобрать его синтетический аналог, а затем и выделить природные соединения – цитокинины.

Оказалось, что цитокинины вырабатываются кончиками корней, а действуют в основном на развитие побегов. Вы, наверное, обращали внимание на то, какие сочные побеги с крупными листьями растут от пней спиленных деревьев – на них действует избыток цитокининов. Цитокинины еще и задерживают старение – если обрызгать ими половинку листа, то она будет оставаться молодой и зеленой, даже когда другая пожелтеет.

При пересадке рассады мы обычно отщипываем кончик корня, при этом уменьшение количества цитокинина приводит к быстрому развитию боковых корней, растение поглощает больше питательных веществ и лучше развивается. Весомый вклад в изучение этого гормона внесла наша соотечественница и современница профессор О.Н. Кулаева.

В рамках небольшой статьи трудно рассказать обо всех чудесах, связанных с фитогормонами. Как, например, вам понравится томат высотой в несколько метров, урожай с которого нужно собирать с лестницы? Такое возможно не только в кино, но и в реальной жизни под действием фитогормона гиббереллина , которым обрабатывают верхушку побега.

Этот гормон открыли в Японии, изучая болезнь риса, называемую «баканэ», или болезнь дурных побегов. Грибок гибберелла, выделяя ростовое вещество, вызывает вытягивание и полегание стеблей риса. Как выяснилось, многие вредители растений, такие как грибы, бактерии, некоторые насекомые, предпринимают «химическую атаку», используя вещества, аналогичные фитогормонам. В результате на растениях могут образовываться опухоли, наросты, «ведьмины метлы». В сельском хозяйстве гиббереллином опрыскивают цветки винограда и так же, как в случае с ауксинами, получают бессемянные плоды – чтобы изюм был без косточек.

Кроме стимуляторов роста к фитогормонам относят и вещества, оказывающие преимущественно тормозящее действие. Многие читатели слышали о процессе яровизации. Если озимую пшеницу посеять не осенью, а весной, то она не даст урожая. Но если смочить семена водой и выдержать их при низких температурах, т.е. произвести яровизацию, растения будут нормально развиваться. Сходную процедуру, возможно, приходилось проделывать и вам, помещая в холодильник набухшие семена огурцов для повышения их всхожести. Что же при этом происходит? При низких температурах разрушается абсцизовая кислота , обеспечивающая покой семян и почек, что защищает их от развития в неподходящее время года. Процесс яровизации имитирует действие зимних холодов и позволяет вывести растение из периода покоя. Абсцизовая кислота помогает растениям пережить и период засухи.

Но, пожалуй, самым замечательным фитогормоном является этилен . Да-да, тот самый газ, который изучают на уроках химии! Вы замечали, что на кухне с газовой плитой хуже себя чувствуют комнатные растения, быстрее вянут срезанные цветы? Это действие этилена, который в небольшом количестве выделяется при сгорании газа. Он вызывает листопад, увядание цветков, созревание плодов.

Этилен обильно выделяется стареющими частями растения. Поэтому если вы хотите подольше сохранить букет, то из него нужно удалять уже увядшие цветы. А если вы собрали зеленые помидоры и хотите, чтобы они быстрее дозрели, к ним нужно положить спелый помидор (а можно и банан!) и накрыть чем-нибудь, чтобы этилен не улетучивался. Используя препараты, выделяющие этилен, можно перевозить на большие расстояния незрелые плоды и в конце пути вызывать их быстрое дозревание. Но не забывайте, если сложить вместе много яблок, да еще накрыть их, то выделяющийся газ вызовет перезревание и урожай будет испорчен.

У этилена есть еще много интересных свойств. Например, каждому дачнику хочется, чтобы на растениях огурцов было поменьше пустоцвета, побольше огурчиков. Этого можно добиться, используя этилен, а также изменяя соотношение между количеством цитокинина и ауксина. Если подземная корневая часть растения развита хорошо, то цитокининов выделяется больше, чем ауксинов, и образуется много женских цветков, а значит, и огурчиков. А вот мощные плети, дающие большое количество ауксинов, при слабой корневой системе часто бывают покрыты мужскими цветками – пустоцветами.

В заключение следует заметить, что перечисленными пятью типами фитогормонов не исчерпывается комплекс гормонов растений. У растений есть и другие гормоны. Кроме того, невозможно приписать какое-либо четко определенное одно – тормозящее или стимулирующее – действие каждому фитогормону. Действие того или иного фитогормона зависит от уровней других гормонов и от многих других факторов. Для выяснения полного спектра действия каждого фитогормона, деталей метаболизма и взаимодействия фитогормонов еще предстоит провести многочисленные и глубокие исследования.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ ИМЕНИ М.Е. ЕВСЕВЬЕВА»

ФАКУЛЬТЕТ ЕСТЕСТВЕННО-ТЕХНОЛОГИЧЕСКИЙ

КАФЕДРА БИОЛОГИИ, ГЕОГРАФИИ И МЕТОДИКИ ОБУЧЕНИЯ

РЕФЕРАТ

Роль фитогормонов в жизни растений

Выполнил(а): Яковлев К.В.,

студент естественно-технологического факультета

3 курса очной формы обучения

Проверил(а): Лабутина М. В.,

кандидат биологических наук, доцент кафедры биологии

САРАНСК 2013

Введение

В настоящее время регуляторы роста растений достаточно широко применяются при решении многих задач в растениеводческой практике. С их помощью совершенствуются агротехнические приемы выращивания отдельных сельскохозяйственных культур. Применение регуляторов роста становится с каждым годом все более разнообразным. Они применяются для ускорения роста растений или его торможения, укоренения черенков, при пересадке деревьев, для повышения урожайности ряда культур, выведения семян из состояния покоя, получения бессемянных плодов, сбрасывания листьев и плодов, подсушивания растений перед уборкой (Муромцев Г.С. и др., 1987).

Применение физиологически активных веществ для регуляции роста и развития растений обусловлено широким спектром их действия на растения, возможностью направленно регулировать отдельные этапы развития с целью мобилизации потенциальных возможностей растительного организма, а, следовательно, для повышения урожайности и качества выращиваемой продукции. растение крыжовник черенок

Садоводство стало первым потребителем синтетических регуляторов роста. К настоящему времени здесь накоплен огромный опыт применения этих веществ, выявлены условия их наибольшей эффективности, особенности реакции многочисленных сортов (Тарасенко М.Т., 1991).

Совершенствование способов ускоренного размножения садовых растений является одной из важных задач современного садоводства и, в частности, питомниководства.

В технологии зеленого черенкования, которому отводится ведущее место в размножении ягодных и декоративных кустарников, большое значение придается подготовительному этапу: созданию оптимальных условий и предварительной подготовке зеленых черенков к укоренению.

Было показано, что дополнительные внекорневые обработки черенков в начале корнеобразования физиологически активными веществами, в том числе в комплексе с элементами минерального питания, могут сыграть положительную роль в ускорении корнеобразования, повышения устойчивости укорененных черенков к неблагоприятным внешним факторам, увеличении выхода товарных саженцев (Аладина О.Н. и др., 1999). Обработка черенков препаратами с ауксиновой активностью нашла широкое применение в технологии зеленого черенкования (Тарасенко М.Т., 1991).

Однако применяемые препараты не всегда обеспечивают высокий коэффициент размножения и хорошее развитие корневой системы черенков, особенно трудноукореняемых видов и сортов (Иванова З.Я., 1982). Кроме того, наиболее эффективные стимуляторы корнеобразования ауксинового ряда?-ИМК и?-ИУК относятся к среднетоксичным соединениям, а качественные препаративные формы, как правило, импортные и очень дорогие.

В связи с этим актуальным является выявление новых экологически безопасных, дешевых соединений, эффективных с точки зрения как укореняемости, так и повышения устойчивости укорененных черенков к условиям выращивания, оценка нормы реакции видов и групп сортов на экзогенные регуляторы роста и изучение механизма действия этих соединений.

Настоящие исследования могут сыграть положительную роль в разработке способов, позволяющих существенно повысить эффективность вегетативного размножения ягодных и декоративных кустарников, в том числе трудноукореняемых видов и сортов.

1. Вегетативное размножение растений

Регенерация (физиологическая, репаративная и репродуктивная) является биологической основой естественных и искусственных способов вегетативного размножения. В производственной практике на основе репродуктивной регенерации разработаны промышленные приемы и методы искусственного вегетативного размножения плодовых, ягодных и декоративных культур (Фаустов В.В.1987).

Укореняемость черенков связана с темпами корнеобразования. У большинства легкоукореняемых форм период корнеобразования менее продолжительный, чем у трудноукореняемых, однако способность черенков укореняться не находится в прямой зависимости от темпов образования корней (Матушкин А.Г., 1969).

Развитие корневой системы у черенков обусловливается наследственной природой растения. Кустарниковые формы и лианы обычно образуют более разветвленную и поверхностную систему, чем древесные породы. У легкоукореняющихся форм, способность к побегообразованию наибольшая, особенно у лиан. Трудноукореняемые растения, как правило, укореняются дольше и обычно не образуют побегов в год укоренения (Тарасенко М.Т., 1991; Скалий Л.П., Самощенков Е.Г., 2002).

Другой характерный внешний признак легкой укореняемости сорта меньшее (в три раза) количество устьиц на единицу поверхности листа. В оптимальные сроки черенкования сокращаются размеры устьиц, поверхность листа становится более морщинистой, что способствует, по-видимому, лучшему удержанию влаги листом.

И, наконец, еще одним признаком высокой регенерационной способности растений является баланс эндогенных гормонов: у легкоразмножаемых форм отмечается высокое содержание ауксиноподобных веществ, у трудно размножаемых - ингибиторов (Чайлахян М.Х., 1982).

Зеленое черенкование считается одним из самых эффективных способов вегетативного размножения плодовых, ягодных и декоративных культур. Оно незаменимо для быстрого размножения ограниченного числа форм, имеющихся в маточнике (ценные селекционные формы, редкие сорта, оздоровленные растения) и способствует оздоровлению посадочного материала, так как растущие побеги в меньшей степени заселены вредителями (Тарасенко М.Т., 1991).

Значительное преимущество данного способа размножения заключается в том, что посадочный материал представляет собой корнесобственные растения, отличающиеся физиологической целостностью и генетической однородностью (Ермаков Б.С, 1981). Однако многие отмечают, что применение зеленого черенкования требует значительных дополнительных затрат на строительство культивационных сооружений и туманообразующих установок (ТОУ).

Новый этап в становлении технологии зеленого черенкования начался после того, как у растений были открыты вещества регуляторного действия и их синтез освоен в химических лабораториях.

1.1 Способы вегетативного размножения крыжовника

Крыжовник Grossularia Mill относится к ягодным кустарникам, которые отличаются невысокой способностью к вегетативному размножению. Его размножают дуговидными, горизонтальными отводками, древесными и зелеными черенками.

Дуговидные отводки применяются редко, так как такой способ имеет низкий коэффициент размножения и ряд недостатков, связанных с сильным истощением кустов и неэффективным использованием зеленых побегов (Володина Е.В., 1986).

Крыжовник часто размножают горизонтальными отводками, однако и этот способ имеет недостатки, такие как сложность выбраковки больных маточных растений, недостаточно высокий коэффициент размножения и отсутствие необходимых машин. Кроме того, укорененные отводки нуждаются в доращивании в течение еще 1-2 лет (Воронина А.И. и др. 1977).

В зависимости от происхождения сорта крыжовника в значительной степени отличаются по способности к укоренению отведенных ветвей. Так, большинство гибридных сортов отличаются достаточно высокой способностью к корнеобразованию, а сортам европейского происхождения Grossularia reclinata (L) Mill свойственно медленное развитие, и их укоренение происходит позже (Осипов Ю.В., 1969).

Некоторые сорта крыжовника гибридного происхождения (Смена, Малахит, Хаутон, Рясный, Колобок, Орленок, Русский) можно размножать одревесневшими черенками (Осипов Ю.В., Морозова Г.М., 1995). Однако авторы считают, что размножение крыжовника одревесневшими черенками неэффективно вследствие низкого качества укоренившихся растений и необходимости продолжительного их доращивания (Володина Е.В., 1986).

Зелеными черенками крыжовник размножается хуже многих ягодных культур, особенно сорта европейской группы и многие перспективные гибридные сорта, такие как Балет, Салют, Лада, Розовый-2, Ленинградец. По многолетним данным, полученным в МСХА, укоренямость зеленых черенков большинства европейских сортов в среднем составляет 50-70 %, а в отдельные годы на фоне неблагоприятных условий среды (пониженные или повышенные температуры в период укоренения) снижается до 10-15 %. По сравнению с другими ягодными культурами черенки крыжовника отличаются более продолжительным и менее дружным укоренением (Тарасенко М.Т., 1991). Кроме того, укоренившиеся черенки плохо переносят пересадку практически на всех этапах развития растения. Укорененные черенки в массе гибнут при перезимовке.

Однако зеленое черенкование, пожалуй, единственный способ ускоренного размножения и быстрого выращивания качественного посадочного материала многих сортов крыжовника, особенно, если речь идет об оздоровленном посадочном материале и возможности выращивать саженцы при любых погодных условиях, в том числе в засушливые годы (Осипов Ю.В., 1970).

1.2 Роль внутренних факторов в корнеобразовании

Для двудольных растений характерна общность механизма регенерации. Так, корневые меристемы у черенков чаще всего формируются в местах пересечения камбия и флоэмы с сердцевинными лучами (Фаустов В.В. 1987). Каллус увеличивается в размерах до появления корней: у легкоукореняемых пород и сортов он небольшой, у трудноукореняемых достигает значительных размеров, сильно истощая черенки и препятствуя образованию корней (Поликарпова Ф.Я. и др., 1994). Придаточные корни разных видов растений в начале корнеобразования бывают похожими, однако в дальнейшем они приобретают морфологические черты, присущие корневой системе соответствующего вида растения.

Начальные этапы укоренения черенков связаны со снижением в тканях содержания нуклеиновых кислот, белкового азота, крахмала, пигментов пластид, а также с качественным и количественным изменением аминокислот и некоторых ферментов (Фаустов В.В. 1987).

Процессы регенерации представляют собой часть регуляторной системы растения, направленной на поддержание его целостности. В настоящее время не выяснено, что вызывает начало клеточных делений. Однако имеющиеся данные свидетельствуют о высвобождении «раневых» гормонов при поражении, что приводит к дедифференциации дифференцированных клеток и возвращению их к меристематической активности (Wareing P.E., al.,1981).

Необходимо отметить, что ризогенез - достаточно сложный процесс, который условно можно разделить на несколько этапов. Некоторые авторы выделяют две стадии или фазы: инициация корней, удлинение и рост корня. В.И Кефели с соавторами (1970), делят процесс ризогенеза на три этапа; В.С. Jervis (1986) - на четыре: индукцию, раннюю инициацию (первые неорганизованные клеточные деления), позднюю инициацию (формирование корневых зачатков), рост и дифференциацию корней. Установлено, что индуктивный период может быть очень коротким - менее 24 часов.

Деление на стадии в известной мере условно, так как число фаз определяется объектом, его физиологическим состоянием, скоростью процесса регенерации. Кроме того, процесс корнеобразования развивается под влиянием внутренних и внешних факторов, тесно связанных между собой.

Внешние факторы влияют на физиологическое состояние материнских растений и, следовательно, на регенерационные процессы у черенков. К ним относятся: свет, как основной фактор роста, развития растений и фотосинтеза; длина дня, при которой выращивают растения; водный режим; обеспеченность элементами питания.

К внутренним факторам можно отнести наследственные особенности, возраст, физиологическое состояние растений.

1.2.1 Наследственные особенности растения

Способность к размножению зелеными черенками в первую очередь определяется наследственными особенностями растений, которые формировались в разные исторические эпохи и в разных экологических условиях (Скалий Л.П., Самощенков Е.Г., 2002). В зависимости от наследственных особенностей виды и сорта делятся на легко-, средне- и трудноукореняемые. Однако в зависимости от возраста маточных растений, условий выращивания и укоренения растения проявляют различную способность к корнеобразованию даже в пределах одного и того же ботанического вида.

Сложившийся сортимент крыжовника представлен двумя большими группами сортов. К первой группе относятся сорта европейского происхождения, которые ведут свою родословную от дикого вида Grossularia reclinata (Крыжовник отклоненный). Сорта: Бразильский, Боченочный, Ранний Генингса, Сеянец Маурера, Триумфальный. Сюда же относятся сеянцы европейских сортов от свободного опыления с преобладанием свойств, присущих сортам европейской группы: Московский красный, Мускатный, Вильяме, Комсомольский, Колхозный, Славянский.

К их недостаткам следует отнести восприимчивость к мучнистой росе, низкую зимостойкость однолетнего прироста и корней, замедленный рост в течение нескольких лет после посадки, высокую шиповатость ветвей. Исследователи отмечают низкую регенерационную способность данных сортов - 19-42 % (Осипов Ю.В., 1969). Для них характерен растянутый период корнеобразования, слабая корневая система, отсутствие прироста, необходимость длительного доращивания.

Вторая группа, американо-европейская, объединяет сорта, полученные путем межвидовой гибридизации европейских сортов с дикими американскими видами (G. hirtella, G. nivea, G. inermis и др). Они представляют большинство современных сортов.

Данные сорта (Садко, Колобок, Грушенька, Северный капитан, Малахит, Челябинский зеленый, Хаутон) представляют большой интерес благодаря неприхотливости, хорошей побегообразовательной и побеговосстановительной способности. Высокая устойчивость к грибным заболеваниям нередко сочетается у них со слабой шиповатостью ветвей (Гроссуляр, Грушенька, Северный капитан, Нежный, Колобок). Однако они образуют плоды чаще среднего размера, по размеру, виду, вкусу и аромату уступающие ягодам европейских сортов.

Эти сорта отличаются сравнительно высокой укореняемостью черенков (54-80%). За один год доращивания растения достигают значительных размеров (25-30 см) и имеют хорошо развитую корневую систему (Осипов Ю.В., 1969, Попова И.В. и др., 1998).

1.2.2 Возраст маточного растения

По данным многих исследователей (Тарасенко М. Т., 1967, Осипов Ю.В., 1969, Гартман Х.Х, Кестер Д.Е., 2001) одним из основных факторов, влияющих на образование корней у стеблевых черенков, является возраст маточного растения.

Особенно сильно зависимость укореняемости от возраста маточных растений проявляется у трудноукорняемых древесных и кустарниковых пород (Гартман Х.Х., Кестер Д.Е. 2001). Но и при размножении легкоукореняемых растений с возрастом маточников укореняемость зеленых черенков снижается (Осипов Ю.В., 1969).

У черенков, взятых с молодых растений, интенсивнее развивается корневая система, сокращается время укоренения, усиливается рост побегов, происходит более интенсивное накопление сырой массы. У старых растений период активного роста побегов короче, сами побеги быстро одревесневают, и ризогенная активность заметно снижается (Тарасенко М.Т., 1991).

С возрастом в растениях снижается водоудерживающая способность, уровень окислительно-восстановительных процессов, белково-углеводный обмен, активность ферментов, происходят структурные изменения, связанные с уменьшением меристематизации тканей.

Учитывая заметное снижение регенерационной способности у многих садовых растений маточники целесообразно эксплуатировать только до 10- 12-летнего возраста (Скалий Л.П., Самощенков Е.Г., 2002), а высших категорий качества - еще меньше: к примеру, крыжовника - 6-7 лет.

2. Эндогенные фитогормоны

Рост растения, образование генеративных органов, способность к регенерации, устойчивость к неблагоприятным факторам среды являются комплексными признаками, которые обусловлены работой множества метаболических систем. Такие системы регулируются фитогормонами и негормональными веществами с регуляторным действием (Шерер В.А. Гадиев Р.Ш., 1991).

Фитогормоны - низкомолекулярные органические вещества, синтезирующиеся в самом растении в различных тканях и органах. Их отличительной чертой является способность действовать в очень малых дозах, играя роль регуляторов основных физиологических программ и процессов (деления и роста клеток, состояния покоя растений, открывания и закрывания устьиц и т. д.).

До последнего времени было известно пять типов фитогормонов: ауксины, цитокинины, гиббереллины, абсцизовая кислота и этилен. Сейчас обнаружены также другие соединения, обладающие регуляторной активностью, такие, как брассиностероиды, жасмоновая кислота, салициловая кислота. (Якушкина Н.И., 1985).

2 .1 Ауксины

По современным представлениям ауксинам отводится ведущая роль в корнеобразовании. Они контролируют дифференциальный рост, деление и растяжение клеток, активируют деятельность камбия, стимулируют поглощение и передвижение пластических веществ по растению, ингибируют образование отделительного слоя, опадение и старение листьев. Ауксины влияют на разные системы метаболизма: синтез нуклеиновых кислот, белка, углеводный, липидный обмен, синтез вторичных веществ, фотосинтез, дыхание (Pandey R.N., 1990).

Установлено, что в растениях ауксины встречаются в основном в виде?-индолилуксусной кислоты (?-ИУК) и ее производных.

Ауксины обнаружены в растении в двух формах - свободной и связанной. Физиологически активной формой считается свободный ауксин, что подтверждается положительной корреляцией между содержанием свободной ИУК в тканях и интенсивностью роста. Связанные фитогормоны имеют меньшую биологическую активность, однако характеризуются более продолжительным действием на рост растений.

Считается, что синтез ауксинов происходит в апикальных меристемах побегов, в активном камбии. Верхушечные меристемы являются атрагирующим центром для других гормонов (ГК, ЦТК), которые, в свою очередь, усиливают действие ауксинов (Полевой В.В., 1982).

Ауксин вместе с ЦТК контролирует деление клетки, индуцирует заложение камбия, образование и дифференциацию проводящих пучков, индуцирует корнеобразование, ингибирует рост пазушных почек, регулирует удлинение корня. Механизм действия предполагает три первичных процесса: изменение белкового синтеза, зависимого от нуклеиновых кислот; влияние на активность ключевых ферментов; изменение транспортных свойств мембран (Stiff С.М., Вое, А.А., 1985; Полевой В.В., 1982).

Активация деления клеток, приводящая к образованию боковых и адвентивных корней, определяется повышением содержания ИУК в корнях в результате базипетального транспорта. При удалении источников эндогенного ауксина (апикальные меристемы, почки, молодые листья) эти процессы не происходят, но могут быть возбуждены экзогенной обработкой ауксином (Муромцев Г.С. и др., 1987).

Существует теория, что одной из причин неодинаковой способности пород и сортов к корнеобразованию является различное содержание ауксинов и ингибиторов роста (Чайлахян М.Х., 1982). У легкоразмножаемых растений инициаторов корнеобразования значительно больше, чем ингибиторов, у среднеукореняемых это соотношение находиться в равновесии, у трудноукореняемых преобладают ингибиторы (Турецкая Р.Х., 1975; Иванова З.Я., 1982).

Однако регенерационная способность зависит не только от содержания, активности ауксинов и их соотношения с ингибиторами роста. В настоящее время имеется много данных о том, что в дифференциации и росте придаточных корней принимают участие также и другие фитогормоны (Иванова З.Я., 1982; Гартман Х.Х., Кестер Д.Е., 2002).

2. 2 Цитокинины

Цитокинины, производные изопентениладенина, регулируют рост и развитие растений в неразрывной связи с другими фитогормонами, обладают широким спектром физиологической активности, присутствуют во всех органах растения (Кулаева О.Н., 1973). Синтезируются в апикальных меристемах корня, оттуда акропетально перемещаются с пасокой по ксилеме. Значительное количество ЦТК обнаружено в камбии (Полевой В.В., 1982). Они малостабильны, обладают более высокой скоростью передвижения, чем ауксины (Ковалев В.М., Янина М.М., 1999). Инактивация ЦТК происходит путем связывания с углеводами и аминокислотами.

Характерное свойство ЦТК состоит в том, что они повышают устойчивость клеток к неблагоприятным воздействиям (повышенные температуры, заморозки, высокие концентрации солей, токсичность химических агентов, грибная и вирусная инфекция), а также влияют на транспирацию и состояние устьиц.

Во многих функциях ЦТК повторяют действие ауксинов: задерживают распад хлорофилла, белков, РНК, поддерживают общую жизнеспособность клеток, усиливают транспорт веществ. Более того, для действия ЦТК часто необходимо присутствие ИУК (в делении клеток, дифференциации и росте почек, апикальном доминировании) (Ковалев В.М., Янина М.М., 1999).

Цитокинины играют значительную роль в индукции клеточных делений, инициации роста и образования корней, прерывании периода покоя семян, замедлении старения листьев и продолжительности периода цветения (Pandey R.N., 1990).

Соотношение ЦТК и ИУК во многом определяет рост и развитие целого растения. Одним из характерных действий этой пары ключевых фитогормонов является контроль над корнеобразованием. Верхушка корня (место синтеза ЦТК) является аттрагирующей зоной меристематической активности, которая управляет делением клеток, образованием боковых корней, развитием стеблевых апексов, удлинением стебля, а верхушка побега (место синтеза ИУК) - сенсорная зона, контролирующая интенсивность растяжения клеток, корнеобразование, удлинение корней, ингибирование роста пазушных почек.

Для закладки и дифференциации корней в каллусе необходимо определенный баланс ЦТК и ИУК. Индукция цитокинином деления клетки происходит только в присутствии ИУК. ИУК активирует синтез, накопление и транспорт цитокининов. В ее присутствии возрастает и аттрагирующая способность ЦТК. С другой стороны ЦТК притягивает ауксины к обработанным участкам, повышая их содержание в тканях. Соотношение концентраций в пользу ЦТК приводит к индукции стеблевых почек, в сторону ИУК - к образованию корней. При промежуточном равновесии между содержанием этих двух гормонов происходит размножение недифференцированных клеток (Полевой В.В., 1982).

2.3 Гиббереллины

Гиббереллины (их известно более 70) относятся к дитерпеноидам. Наиболее известный гиббереллин - А3, гибберелловая кислота (ГК). Лишь около трети всех известных в настоящее время гиббереллинов обладает физиологической активностью, и связь между их химической структурой и биологическим действием остается неясной. (Шерер E.A., Гадиев Р.Ш., 1991). В растениях гиббереллины постоянно передвигаются, меняются их локальные концентрации. Транспорт гиббереллинов неполярен; они перемещаются базипетально и акропетально по ксилеме и флоэме, поэтому скорость транспорта велика.

Гиббереллины присутствуют во всех органах растения. Особенно богаты им растущие молодые органы. Гиббереллины находятся в растении не в виде свободных кислот, а в форме их различных производных. Различают связанные и конъюгированные с низко молекулярными веществами гиббереллины. Характерная особенность последних - более низкая активность. Считается, что образование гликозидов является механизмом инактивации гиббереллинов, которые играют роль транспортных и запасных форм.

Наибольшая активность эндогенных гиббереллинов обычно совпадает с периодом активной жизнедеятельности растений. Когда активный рост прекращается, активные гиббереллины могут трансформироваться в неактивные. (Муромцев Г.С. и др., 1987). Стимуляция вегетативного роста - это самый известный эффект гиббереллинов. Обработка ГК часто стимулирует развитие ксилемы, отмечено усиление лигнификации ее клеток. Влияние экзогенной ГК на листья не так ярко выражено, как на стебель.

ГК контролирует синтез гидролитических ферментов и гидролиз запасных веществ, активизирует цветение на неблагопритяном дне и пробуждение пазушных почек (Нижко В.Ф. 1983). Способствует выходу почек из состояния покоя, может снять состояние глубокого покоя. Блокирует работу камбия, ингибирует образование корней на черенках. Большинство исследований свидетельствует об отрицательном действии гиббереллина на развитие корневой системы.

По мнению Гамбурга К.З. (1970), отрицательное действие ГК на корневую систему связано с увеличением потребления органических веществ гипертрофированной надземной частью и соответствующим их перераспределением. Отрицательное действие ГК на корнеобразование связывают также с преимущественно акропетальным передвижением этого гормона, приводящим к тому, что в зоне стеблевого апекса создается аттрагирующая зона, являющаяся центром притяжения ауксина и пластических веществ. Передвижение же в базипетальном направлении идет труднее и медленнее (Чайлахян М.Х., 1982).

Соотношение гиббереллинов и антигиббереллинов (этилен, АБК) в растении непрерывно меняется в ходе онтогенеза и в зависимости от меняющихся условий внешней среды (Кефели В.И., 1997).

2.4 Абсцизовая кислота (АБК)

АБК по праву считается важнейшим гормоном в растении. Установлено, что у гиббереллинов и АБК общий предшественник при биосинтезе, что имеет большое значение в процессе регуляции различных состояний растительного организма (Шерер В.А., Гадиев Р.Ш., 1991). Наибольшее содержание АБК отмечают в хлоропластах старых листьев, зрелых плодах, покоящихся семенах и почках. Синтез зависит от освещенности, состава света, температуры. Интенсивность образования увеличивается по мере старения. АБК транспортируется акропетально и базипетально по флоэме и ксилеме, скорость передвижения довольно высокая. Метаболизм идет через образование конъюгатов с углеводами.

Физиологические эффекты связаны как с ингибированием, так и со стимулированием важнейших физиологических процессов. АБК контролирует движение устьиц, ускоряет распад нуклеиновых кислот, белков, хлорофилла, ингибирует активность протонной помпы, прерывает окислительное фосфорилирование, индуцирует опадение листьев, цветков и плодов и наступление периода покоя семян (Pandey R.N., 1990; Кулаева О.Н., 1973; Кефели В.И., 1997; Ковалев В.М., Янина М.М., 1999), выступает как коррелятивный ингибитор, как фактор, блокирующий процессы роста, вызываемые ауксином, ЦТК и ГК (Wareing P.F., al., 1964).

Очень важна роль АБК в устойчивости растений к стрессу. АБК, как и ЦТК индуцирует синтез стрессовых белков. Растения, неспособные к синтезу АБК, быстро гибнут (Ковалев В.М., Янина М.М., 1999). Как и этилен, АБК в определенном интервале концентраций оказывает стимулирующее действие на корнеобразование.

2.5 Этилен

Этилен играет чрезвычайно важную роль в жизнедеятельности растений. Он образуется не только в плодах или стареющих растительных тканях, но также и в ювенильных тканях растений. Этилен не только быстро выделяется в окружающую среду, но и подвергается окислению с образованием окиси этилена, которая трансформируется в этиленгликоль. Последний превращается в этаноламин и СО2, либо глюкозидируется. Окисление этилена каким-то образом связано с реализацией его физиологической активности (Муромцев Г.С. и др., 1987).

Синтез этилена у высших растений наиболее интенсивно происходит в два периода онтогенеза: в делящихся клетках растений и при старении клеток и органов (Шерер В.А., Гадиев Р.Ш., 1991).

Проявление активности этилена очень разнообразно, и это, вероятно, обусловлено многообразием механизмов, действующих в различных физиологических ситуациях. Этилен, наряду с ускорением формирования отделительного слоя и индукцией растяжения клеток, способен тормозить синтез ДНК, подавлять митоз, замедлять растяжение клеток, вызывать эпинастии листьев, подавлять полярный и латеральный транспорт ауксина, индуцировать созревание плодов и образование фитоалексинов (Dilley D.R., 1980), а также активировать хитизану, что способствует защите растения от многих фитопатогенных грибов (Boller Т., аl, 1982).

Существует мнение, что проявления физиологической активности этилена опосредованы ауксином, АБК и другими гормонами (Furutani S.C., al 1987). Давно замечено, что обработка растений ауксином или его аналогами приводит к интенсификации биосинтеза этилена (Гуськов А.В. и др., 1997). Во многих случаях интенсивность биосинтеза этилена возрастает одновременно с повышением содержания АБК. Существует предположение, что интенсификация процессов образования этилена предшествует накоплению АБК.

Открыто ризогенное действие этилена у древесных растений. При этом значительно активизируется процесс образования корневых волосков (Полевой В.В., 1982). Как избыток, так и недостаток этилена снижает способность черенков к корнеобразованию. Совместное применение стимуляторов биосинтеза этилена и ауксина заметно усиливает это процесс.

Basu R.N. (1971) выдвинул гипотезу механизма действия ауксинов на корнеобразование через изменение уровня этилена, приводящее к синтезу специфических ферментных белков, необходимых для начальных этапов регенерации придаточных корней. Вызываемое иногда экзогенными ауксинами подавление роста корня, стебля, почек может быть обусловлено действием этилена, образование которого резко усиливается.

3 . Роль внешних факторов в корнеобразовании

3.1 Сроки черенкования

У многих растений способность к корнеобразованию проявляется только в определенные фазы роста и развития. Основным фактором, определяющим срок черенкования, является степень вызревания черенка (Поликарпова Ф.Я., 1991).

У большинства плодовых культур оптимальный срок черенкования совпадает с фазой интенсивного роста побегов в длину. (Скалий Л.П., Самощенков Е.Г., 2002). В этот период побеги богаты меристематическими тканями, достаточно обеспечены пластическими веществами, особенно органическими формами азота, фосфора. Характеризуются высоким уровнем гормональной активности, интенсивной деятельностью камбия, быстрым нарастанием тканей, особенно вторичной ксилемы и флоэмы, началом одревеснения клеточных стенок первичной ксилемы. Заготовка зеленых черенков в фазу активного роста обычно дает стабильно высокий выход саженцев с хорошо развитой корневой системой, кроме того, возникает возможность еще раз получить побеги для второго срока черенкования (Воронина А.И. и др., 1977).

Более поздние сроки черенкования приводят к снижению укореняемости черенков и их сохранности в зимний период (Павлова Н.Ю., Павлова А.Ю. 1995). Это связывают с накоплением в тканях стебля малоактивных продуктов обмена (клетчатка, лигнин) и одновременным снижением содержания метаболически активных клеточных компонентов, в частности, органических соединений азота.

У трудноукореняемых пород и сортов оптимальный срок черенкования относительно короткий (10-14 дней) и четко совпадает или с фазой интенсивного роста побегов (вишня, слива, сирень, барбарис, золотистая и красная смородина) или с фазой затухания роста (европейские сорта крыжовника). У легкоразмножаемых растений период зеленого черенкования более растянут, и может продолжаться с начала июня до конца августа.

3 .2 Тип черенков

Регенерация придаточных корней зависит от места расположения черенка на растении (Поликарпова, Ф.Я. 1991). Черенки, заготовленные из побегов нижнего яруса кроны, укореняются лучше, чем из побегов верхнего яруса. Черенки из вегетативных побегов склонны к более легкому укоренению, чем из цветковых, поэтому агротехника маточных растений должна быть направлена на исключение цветения и плодоношения (Картушин А.Н., 2000).

Не рекомендуется заготавливать черенки от слабых побегов, у которых ткани стебля быстро стареют, жирующих побегов, чрезмерно растущих и от осевых побегов продолжения, так как несбалансированность углеводно-белкового обмена приводит к торможению формирования корневых зачатков (Картушин А.Н., 2000).

Для черенкования лучше брать боковые побеги на приростах прошлого года, средней силы роста, с хорошо освещенных участков кроны. У крыжовника лучше всего укореняются черенки с трех-четырехлетних ветвей, особенно боковых побегов, где более интенсивно протекают биохимические процессы.

Известно, что корнеобразование зависит от облиственности черенка и интенсивности ассимиляционных процессов (Ермаков Б.С, Журавлева М.В., 1974). Лист - источник пластических веществ и гормонов. В процессе регенерации стеблевых черенков большое значение имеют коррелятивные взаимоотношения между листьями, почками и стеблем черенка, так как листья служат поставщиком продуктов фотосинтеза, выполняют сопутствующую фотосинтезу испаряющую функцию, которая является необходимым фактором в жизнедеятельности растений и образовании адвентивных корней (Фаустов В.В., 1987).

Зеленые черенки отдельных трудноукореняемых видов, в том числе крыжовника, хорошо укореняются с частью прошлогоднего прироста. Различают три типа комбинированных зеленых черенков: с пяткой, костыльком, подставкой:

· черенки с пяткой имеют на конце расширенное основание за счет коры и тонкого слоя двухлетней древесина. Заготавливая черенки с пяткой, побеги отрывают или выламывают с частью прошлогодней древесины;

· черенки с костыльком заготавливают из верхушечного побега с кусочком верхней части прошлогоднего прироста, расположенного параллельно побегу;

· черенки с подставкой имеют часть прошлогодней древесины, расположенной перпендикулярно побегу. Побег может отходить от подставки под разным углом. Заготавливают такие черенки из боковых побегов. Они более устойчивы к условиям внешней среды, их удается укоренить даже в открытом грунте при орошении. Однако при черенковании побегов с подставкой снижается коэффициент размножения.

Комбинированными черенками (в отличие от зеленых) крыжовник можно размножать в течение всего периода интенсивного роста побегов (Осипов Ю.В., 1970).

В разные сроки черенкования рекомендуется использовать для укоренения черенки разных типов: в ранние сроки - комбинированные черенки, в фазу интенсивного роста - черенки с пяткой и из средней части побега; в поздние сроки (фаза затухания интенсивного роста побегов) - верхушечные черенки.

3 .3 Условия укоренения

Оптимизация режимов укоренения - один из основных способов увеличения регенерационной способности многих трудноразмножаемых пород и сортов (Скалий Л.П., Самощенков Е.Г., 2002).

Для активного корнеобразования необходим комплекс факторов, который может одновременно обеспечить максимальное сокращение транспирации, интенсивную ассимиляционную и гормональную деятельность листьев (Тарасенко М.Т., Ермаков Б.С, 1968). К ним, прежде всего, относятся температура и влажность почвы и воздуха, а также режим освещенности.

Процесс корнеобразования требует более высокой температуры, чем рост растений. Потребность в тепле для укоренения черенков различных биологических групп неодинакова. Оптимальная температура для укоренения зеленых черенков большинства плодовых пород находится в пределах 22-30°С.

Крыжовник особенно требователен к условиям укоренения. Он успешнее укореняется при температуре субстрата 22-24°С, воздуха - 18-23°С (Сухоцкая С.Г., Шихалеева А.К., 1983). Соотношение температуры субстрата и воздуха должно изменяться в зависимости от фазы укоренения черенков. В первую фазу корнеобразования, когда формируются зачатки корней в тканях черенка, температура субстрата должна быть на 2-3°С выше, чем температура воздуха. Во вторую фазу корнеобразования, когда корень выходит из тканей черенка в субстрат, температура субстрата должна быть на уровне температуры воздуха или несколько ниже.

Эффективность черенкования значительно выросла с появлением культивационных сооружений пленочного типа, оборудованных автоматизированной системой ТОУ. В них создается благоприятный микроклимат: обеспеченная прерывистым туманом высокая влажность воздуха резко снижает транспирацию растений, а наличие тонкой пленки воды на листовой поверхности ослабляет перегрев листьев, поддерживает фотосинтез и сокращает потери пластических веществ на дыхание.

Субстрат для укоренения черенков должен хорошо удерживать воду и в то же время обеспечивать дренаж и аэрацию, быть свободным от возбудителей болезней и вредителей и семян сорняков. Обычно в качестве субстрата используют смесь торфа или перегноя с песком или перлитом в соотношении 1:1.

Черенки большинства садовых растений лучше укореняются при влажности субстрата 20-25 % от абсолютно сухой массы (Ермаков Б.С, 1981). После массового укоренения влажность субстрата поддерживают на более низком уровне, иначе некоторые культуры, к которым относится и крыжовник, оставаясь длительное время во влажном субстрате, могут погибнуть (Поликарпова Ф.Я., 1991).

Для большинства плодовых и ягодных культур средней зоны садоводства наиболее благоприятный режим освещенности складывается под полиэтиленовой пленкой, которая пропускает 60-80 % дневного света. Оптимальная освещенность - 10 тыс. люкс.

Плотность посадки черенков крыжовника - 500-700 шт./м2. Загущение недопустимо, поскольку ухудшается аэрация, затененные листья слабо ассимилируют, желтеют и вскоре опадают, и, кроме того, развиваются грибные заболевания.

Главной проблемой питомников является низкая приживаемость укоренившихся черенков в зимний период. Причины этого заключаются в недостаточном количестве углеводов для обеспечения жизнеспособности черенка в зимний и ранневесенний период и для индуцирования необходимой холодостойкости, а также в недостаточной продолжительности периода закаливания перед наступлением холодной погоды из-за того, что черенки находятся в состоянии активного роста.

Черенки, у которых рост возобновляется сразу после укоренения, характеризуются высокой степенью выживаемости в зимний период. Стимулировать пробуждение почек после образования корней можно досвечиванием с 22.00 до 2.00, так как увеличение длины светового дня предотвращает наступление покоя у черенков; поддержанием температуры выше 13° С в светлое время суток. У большого числа пород отмечается значительное повышение выживаемости в результате внекорневой обработки гиббереллинами, реже с этой целью используют цитокинины.

3.4 Внекорневые обработки зеленых черенков

3.4.1 Элементы минерального питания

Обеспеченность растений элементами минерального питания при укоренении влияет на регенерационную способность садовых растений (Чигоев И.З., 1995).

Многими авторами показано, что внекорневые подкормки могут давать такие же высокие результаты, как и внесение азота в почву при выращивании плодовых растений (Чигоев И.З., 1995). В настоящее время для внекорневых подкормок применяются практически все виды азотных удобрений. Наибольшее распространение получил карбамид (мочевина).

Данные, полученные исследователями на разных культурах, свидетельствуют о преимуществе использования мочевины в период укоренения зеленых черенков. После подкормки мочевиной укорененные черенки отличались мощной корневой системой и надежной приживаемостью при пересадке на доращивание (Ревякина Н.Т., 1975).

Внекорневая подкормка мочевиной способствует усилению роста, увеличению содержания зеленых пигментов в листьях, усилению газообмена в листьях. При этом в листьях и побегах увеличивается содержание сахаров. Отмечено также, что мочевина способствует значительно большему поступлению регуляторов роста в ткани растений (Ревякина Н.Т. и др., 1975).

Успешная перезимовка укорененных черенков зависит от мощности развития корневой системы. Подкормка зеленых черенков крыжовника в период укоренения минеральными удобрениями увеличивает процент укоренившихся черенков, толщину корневой шейки, прирост побегов, количество и длину основных корней (Тарасенко М.Т., 1991).

Хорошие результаты дают комплексные внекорневые обработки черенков крыжовника азотом, фосфором и калием. Лучшему развитию укорененных черенков способствует следующее соотношение минеральных солей (N:Р:К = 1:2:1). В конце сезона для повышения зимостойкости укорененных черенков крыжовника проводят подкормку раствором этих же солей в соотношении 1:3:3 (Володина Е.В., 1986).

Большой интерес представляют внекорневые подкормки плодовых и ягодных культур микроэлементами, среди которых особенно важными для ягодных растений являются В, Mn, Zn (особенно на подзолистых почвах с низким содержанием органических удобрений) (Воронина А.И. и др., 1977). Высока эффективность комплексов микроэлементов - они усиливают рост, увеличивают площадь листьев, содержание хлорофилла.

С уровнем минерального питания также тесно связана эффективность действия фитогормонов. С другой стороны, фитогормоны активизируют поступление самих минеральных элементов в растение (Гончарук В.М. 2001).

3.4.2 Регуляторы роста растений

Большая часть исследований по зеленому черенкованию посвящена влиянию обработок стимуляторами роста на корнеобразование черенков.

Регуляторы роста - это природные или синтетические химические соединения, которые применяют для обработки растений, чтобы изменить процессы их жизнедеятельности. Они вызывают усиление или ослабление корнеобразования, закладку почек, пробуждение от покоя или торможение ростовых процессов (Шерер В.А. Гадиев Р.Ш., 1991).

Влияние регуляторов роста на корнеобразование оказалось настолько значительным, что многие виды и сорта, зеленые черенки которых ранее практически не укоренялись, оказались сравнительно легко размножаемыми зеленым черенкованием. Это расширило возможности технологии зеленого черенкования, повысило ее эффективность (Тарасенко М.Т. и др., 1968; Фаустов В.В., 1987; Скалий Л.П., Самощенков Е.Г., 2002).

При обработке травянистых черенков, заготовленных с молодых растений, или маточников защищенного грунта, используют более низкие концентрации регуляторов роста. При оптимальных сроках черенкования применяют средние концентрации препаратов. При размножении трудноукореняемых пород, а также при поздних сроках, когда побеги закончили свой рост в длину и одревеснели, лучшие результаты получаются при использовании относительно высоких концентраций регуляторов роста.

Нарезанные черенки необходимо сразу же обрабатывать регуляторами роста, т.к. при обработке черенков на третий день после срезки стимулирующее действие уже не проявляется. Для стимуляции корнеобразования используют разные способы обработки черенков регуляторами роста.

Черенки обрабатывают слабоконцентрированными водными растворами (16-24 часа) и концентрированными спиртовыми растворами (экспозиция от одной до нескольких секунд). Водными растворами регуляторов роста можно заранее, до нарезки черенков, увлажнять субстрат, в котором укореняются черенки. Физиологически активные вещества (ФАВ) в виде растворов, эмульсий или аэрозолей используют для опрыскивания черенков по листьям; черенки обработывают парами препарата. Возможны вакуум-инфильтрации, инъекции.

Физиологически активные вещества можно применять в смеси с наполнителями (тальк, древесина, уголь), с ланолиновой пастой, жидким хозяйственным мылом (Скалий Л.П., Самощенков Е.Г., 2002).

Оптимальная доза регуляторов роста при обработке черенков одних и тех же пород может изменяться в зависимости от физиологического состояния побегов, их возраста и степени одревеснения, а также от сроков черенкования. Как правило, черенки наиболее чувствительны к регуляторам роста в период закладки корневых зачатков.

Ауксины

Основополагающая роль в регуляции корнеобразования при обработке зеленых черенков принадлежит ауксинам.

Изолированный орган испытывает стресс, обусловленный дефицитом воды, минеральных веществ и гормонов (Ловцова Н.М., 2001). В процессе репродуктивной регенерации происходит перестройка структурных и метаболических процессов, что приводит к образованию придаточных корней. Введенная в черенки с транспирационным током ИУК вначале распространяется равномерно по всему черенку, однако, когда в нижней части начинают активизироваться процессы корнеобразования, она устремляется к новой зоне меристематизации и полностью исчезает в верхней части черенка (Полевой В.В., 1982).

Установлено, что при обработке основания зеленых черенков ауксинами в определенных концентрациях клетки камбия и корневой паренхимы становятся центрами притяжения воды и питательных веществ. Это приводит к растяжению клеток, новообразованию цитоплазмы и следующему за ним клеточному делению, возникновению новых меристематических очагов, из которых образуются придаточные корни (Тарасенко М.Т., 1967; Чайлахян М.Х., 1982).

В питомниководстве применяют синтетические регуляторы роста, обладающие высокой физиологической активностью: гетероауксин или?-индолил-3-уксусную кислоту (ИУК); ?-индолил-3-масляную кислоту (ИМК); ?-нафтилуксусную кислоту (?-НУК); 2,4-дихлорфеноксиуксусную кислоту (2,4-Д); индолил-3-ацетамид (ИААМ); индолил-3-ацетальдегид (ИААльд); индолил-3-ацетонитрил (ИАН); индолилпировиноградную кислоту (ИПВК).

Чаще всего применяют первые три препарата или их аналоги в виде калийных солей гетероауксина и?-НУК.

Цитокинины

Известно, что цитокинины активируют меристематическую активность, оказывают влияние на распределение энергетических ресурсов, действуют на покой почек, снижают апикальное доминирование, оказывают положительное влияние на развитие хлоропластов и биосинтез ДНК и РНК, некоторых ферментов и фитогормонов, что, в конечном итоге, приводит к индукции клеточных делений.

Аладиной О.Н. и др. (1989) было показано, что обработка зеленых черенков ягодных кустарников в начале корнеобразования дроппом (20 мг/л) и смесью дроппа с гибберсибом (30 мг/л) оказывает положительное влияние на развитие укорененных черенков, их приживаемость при пересадке в открытый грунт.

Для снижения потерь укороченных зеленых черенков крыжовника, черной и красной смородины при укоренении и доращивании их в начале корнеобразования обрабатывали составом, содержащим дропп (0,001-0,0015% по д.в.) и крезацин (0,001-0,002% по д.в.). Совместное применение препаратов в низких концентрациях ускоряло корнеобразование на 2-3 недели, способствовало улучшению всех показателей развития укорененных растений, хорошую (65-95%) приживаемость укорененного материала в открытом грунте и высокий выход стандартных саженцев. Быстрое укоренение позволило провести летнюю пересадку черенков, которые хорошо прижились до наступления холодов, и снизить потери на 40 % (Агафонов Н.В. и др., 1991; Аладина О.Н., Б Ханжиян И.И., 1999).

Экзогенный ЦТК способствует интенсивному росту листовой пластинки и задерживает старение листьев. Область нанесения ЦТК играет роль аттрагирующего центра, куда направляется поток метаболитов и гормонов из других листьев и частей растения (Полевой В.В., 1982). Высокое содержание цитокининов в листьях способствует повышению интенсивности фотосинтеза, увеличению размеров клеток эпидермиса и мезофилла. Эффект зависит от возраста листа и возраста растения. У молодых листьев 6-БАП стимулирует клеточное деление; у растущих листьев - растяжение клеток, а у стареющих не вызывает изменения структуры мезофилла (Роньжина Е.С., 2001).

Синтетические регуляторы роста цитокининового типа действия (дропп, цитодеф) повышают устойчивость растений к неблагоприятным факторам внешней среды, проявляя стабилизирующее мембраны действие. Обработка растений ЦТК в засушливый период задерживает пожелтение листьев при недостаточном водоснабжении и нарушении аэрации почвы (Лукаткин А.С. и др., 2001).

Обработка зеленых черенков персика и нектарина через неделю после посадки смесью 6-БАП и нафтилуксусной кислоты увеличивала укореняемость на 30 %. Весьма эффективной была обработка черенков после начала корнеобразования составом, содержащим мезоинозит и 6-БАП. Обработки влияли на сохраняемость листьев на черенке, содержание в них цитокининов и сахаров в корнях. Применение препаратов в отдельности не влияло на содержание этих веществ в укореняющихся растениях. Авторы выяснили роль цитокининов в увеличении приживаемости укорененных черенков и факт влияния мезоинозита на транспорт цитокининов из надземной части черенка в корни (Gur A., al., 1986).

При внекорневой обработке сеянцев дуба белого удобрениями (NPK 2:1:1) (1500 мг/л) совместно с 6-БАП и ГК (50 мг/л) были отмечены самые высокие показатели сухой массы, высоты сеянцев, длины корней и диаметра корневой шейки (Dixon R.K., Garrett H.E., Cox G.S., 1984).

Известно положительное действие промалина (смесь бензиладенина с гиббереллинами А4 и А7) на регенерационные процессы одревесневших черенков персика при еженедельной обработке после образования зачатков корней. (Erez А., 1984).

В настоящее время не вызывает сомнения тот факт, что в процессе корнеобразования участвует не один фитогормон, а весь баланс эндогенных гормонов. Многочисленные сведения о высокой эффективности целого ряда препаратов с разной физиологической активностью при обработке зеленых черенков служит тому косвенным подтверждением (Агафонов Н.В. и др., 1991; Аладина О.Н., Ханжиян И.И., 1999; Гуськов А.В. и др., 1997; Пентелькина Ю.С., 2004).

Однако применение стимуляторов роста в питомниках ограничено в связи с недоступностью и высокой стоимостью препаратов, а также их токсичности. Поэтому необходимы доступные стимуляторы корнеобразования, обладающие широким спектром эффективных концентраций, исключающие возможность отрицательных последствий при неправильном разведении, не токсичные, дешевые и экологически безопасные (Шакиров Ф.Р., 2002).

Новые синтетические регуляторы роста

N-(1,2,4-триазол-4-ил)-N"-фенилмочевина. Является синтетическим производным природного цитокинина дифенилмочевины и по активности не уступает 6-БАП или кинетину. Используется в виде 4% раствора (цитодеф) на плодовых культурах для повышения урожайности и улучшения лежкости плодов. На овощных культурах для увеличения выхода ранней продукции, на сахарной свекле для увеличения сахаристости корнеплода, на декоративных культурах для увеличения яркости окраски и размеров цветов. Различные аспекты цитокининовой активности цитодефа в приложении к широкому кругу культурных растений исследованы и продолжают изучаться в настоящее время.

...

Подобные документы

    Черенкование как распространенный способ вегетативного размножения растений. Корневин - биостимулирующий препарат для растений, в состав которого входит индолилмасляная кислота. Влияние длины черенков на показатели корнеобразования фикуса Бенджамина.

    дипломная работа , добавлен 17.06.2017

    Виды вегетативного размножения растений. Типы искусственного вегетативного размножения растений. Деление куста, корневые и стеблевые отпрыски. Размножение растений отводками и прививками, окулировка и копулировка. Характеристика метода культуры клеток.

    реферат , добавлен 09.12.2011

    Использование хвойных растений в озеленении. Посадка черенков и уход. Основные способы размножения хвойных растений. Характеристика можжевельника казацкого и туи западной. Развитие корневой системы растений. Характеристика участка для посадки черенков.

    научная работа , добавлен 08.01.2010

    Вегетативное размножение - размножение растений при помощи вегетативных органов: ветвей, корней, побегов, листьев или их частей. Преимущества вегетативного размножения. Разные способы размножения растений, методы выращивания растений семенным способом.

    реферат , добавлен 07.06.2010

    Митохондрии, рибосомы, их структура и функции. Ситовидные трубки, их образование, строение и роль. Способы естественного и искусственного вегетативного размножения растений. Сходство и различие голосеменных и покрытосеменных растений. Отдел Лишайники.

    контрольная работа , добавлен 09.12.2012

    Способы размножения растений: вегетативное и половое. Факторы, влияющие на прорастание семян. Способы размножения луковичных растений. Характеристика регуляторов роста ("Эпин экстра", "Циркон", "Флоравит 3Р") и их влияние на рост и развитие растений.

    дипломная работа , добавлен 17.06.2017

    Типы и роль пластид в жизни растений. Значение лубяных, древесных волокон. Способы питания и размножения грибов. Жизненный цикл сосны обыкновенной. Характеристика семейства астровых. Влияние климатических факторов на распределение растительности по зонам.

    контрольная работа , добавлен 03.11.2009

    Физиологически активные вещества растительной клетки. Элементы, получаемые растением из почвы через корневую систему, их роль в жизни растений. Морфологическое строение побега, расположение листьев. Элементы древесины и луба голосеменных растений.

    контрольная работа , добавлен 13.03.2019

    Земные и космические факторы жизни растений. Солнечная радиация как основной источник света для растений. Фотосинтетически и физиологически активная радиация и ее значение. Влияние интенсивности освещения. Значение тепла и воздуха в жизни растений.

    презентация , добавлен 01.02.2014

    Использование кустарников в озеленения, способы их размножения. Ростовые вещества, характеристика маточных растений. Туя западная, можжевельник казацкий, спирея японская. Посадка черенков и уход. Сравнительный анализ укоренения черенков хвойных растений.

Отсчет истории современной фитогормонологии ведется по исследованиям М. Холодного и Ф. Вента. Еще в начале 1900-х Вент определил, что «Ohne Wuchstoff, kein Wachstum» - «без ростовых субстанций нет роста». Производственники и ученые прилагают целенаправленные усилия для стимуляции роста и развития культурных растений и увеличения их урожайности.

Роль фитогормонов на стимуляцию роста растений

Биологически активные вещества (БАВ), в том числе фитогормоны растений - регуляторы (стимуляторы) роста и развития растений (РРР) - в современных условиях приобретают все большее значение. Их применение в земледелии, растениеводстве и лесном хозяйстве потенциально может обеспечить получение результатов, которых нельзя достичь другими способами. Использование РРР позволяет полнее реализовать генетический потенциал культур, повысить устойчивость растений к стрессовым факторам биотической и абиотической природы и, в конечном итоге, увеличить урожай и улучшить качество

В последние годы быстро развивается мировой рынок биостимуляторов (фитогормонов для растений). Ежегодно он растет на 12% и к 2018 году превысит 2,2 млрд долл. США (Calvo с соавт., 2014). Определение содержания термина «биостимуляторы растений» все еще в стадии развития, отражает различные взгляды на агрохимикаты и биологические субстанции, которые могут рассматриваться как биостимуляторы.

Фитогормоны (от греч. Phyton - растение и гормоны) - органические соединения различной химической природы, которые производят специализированные ткани высших растений и в низких концентрациях проявляют регуляторное влияние на процессы онтогенеза, регулируют рост и развитие растений. Образуются, главным образом, в меристематических тканях, активно растут в зонах апексов корней и стеблей. Фитогормоны для растений является важной составляющей систем регуляции онтогенеза высших растений.

Фитогормоны для растений

По современным представлениям, регуляторы роста растений - это естественные и синтетические органические вещества, обладающие биологической (селективной) активностью и которые в небольших дозах изменяют физиологические и биохимические процессы, рост, развитие и формирование урожая сельскохозяйственных культур, не вызывая токсического действия. В частности, при внекорневом внесении они могут включаться в обмен веществ и активировать физиолого-биохимические процессы, повышая уровень жизнедеятельности растений.

Регуляторы роста растений разделяют на группы по химической структуре и по механизму действия, в зависимости от их способности влиять на процессы клеточного деления, управлять процессами растяжения и формирования клеточной стенки, изменять ее структуру и архитектонику, физико-химические и механические свойства, ее устойчивость к полеганию и тому подобное. Они объединяют БАР, контролирующих клеточную дифференциацию, органо и формообразования, взаимодействие между частями и органами растений, избирательно и специфично включаются в важнейшие метаболические процессы (дыхание, фотосинтез, транспортировки органических веществ), участвуют в регуляторных механизмах клетки на метаболическом уровне. В отдельную группу БАР входят соединения, с помощью которых можно управлять состоянием покоя и процессами старения клетки и в целом растения (для вывода растений или их частей из состояния покоя, регуляции процессов созревания листьев, плодов и т.д.).

Исследование стимуляторов роста растений

Наиболее исследованными являются 5 групп фитогормонов для растений: ауксины, гиббереллины, цитокинины и абсцизовая кислота и этилен (ингибиторы). Каждая группа фитогормонов для растений имеет свое характерное действие, подобное в растениях разных видов. Кроме того, к фитогормонам роста растений относят и другие эндогенные вещества, регуляторная активность которых определена в последние годы: брассиностероиды, липосахариды, олигосахариды, жасмоновая кислота, салициловая кислота, многочисленные пептиды, полиамины, ингибиторы классов фенилпроизводных, окиси азота и др. Иногда вместе с «классическими фитогормонами» их называют обобщающим термином «естественные регуляторы роста растений». Следует вспомнить и биостимуляторы растений, в том числе и композиции с множественным механизмом рострегулирующего действия, к которым относят микроорганизмы и органические соединения (в частности гуматы, гуминовые и фульфокислоты).

Ускорители роста растений: а уксины

Детально изученными фитогормонами для растений является ауксины, которые были открыты во время исследования роста растяжением и тропизмов у растений. Однако их функции гораздо шире и, по сути, охватывают всю жизнедеятельность растительного организма. Доказано, что они участвуют в регуляции различных ростовых и формообразующих процессов, в частности стимулируют растяжения клеток и активируют ферменты, отвечающие за прочность клеточной стенки. Ауксин является обязательным при координации процессов морфогенеза, двигательной и функциональной активности у растений. Наличие ауксина (вместе с цитокинином) необходима для индукции деления клеток, прежде всего - для инициации репликации ДНК. Переход клеток к митозу и цитокинезу зависит, как правило, также от наличия цитокинина, однако высокие концентрации ауксина способны без цитокинина вызвать митоз в соматических клетках растений.

Основным природным ауксином (фитогормоном для растений) является индолилуксусная кислота (ИВК), которая быстро расщепляется ферментом индолацетатоксидазой. Активность этого фермента ингибируется некоторыми орто-дифенолами. Стимулирующее действие орто-дифенола на рост было известно достаточно давно. Сначала считали, что эти вещества и является ауксинами (фитогормонами для растений). Однако их стимулирующее действие объясняется тем, что они подавляют активность индолацетатоксидазы, что приводит к повышению содержания в тканях растения эндогенной индолилуксусной кислоты. Многочисленные данные свидетельствуют о влиянии ИВК и ее синтетических аналогов на митотическую активность тканей в целых растениях. Известно, что ИВК, особенно весной, в апикальных меристемах в период их высокой активности активирует функциональную активность камбия. Под влиянием ауксина происходит разрастание тканей завязи, причем сначала ИВК выделяется пыльцой, а в дальнейшем продуцентами ИВК и других фитогормонов становится именно семена. Поступления ИВК в ткани плода является обязательным условием при формировании органа. Наиболее изученным примером действия ИВК на деление клеток является индукция образования корней. При погружении проростков корней в раствор ауксина наблюдается усиление роста корня.

В практике растениеводства ауксины (фитогормоны) чаще всего используют для:

  • стимулирования корнеобразования у черенков, восстановления корневой системы, содействия поглощению питательных веществ, усилению дыхания;
  • образования партенокарпических плодов;
  • предотвращения опадения плодов;
  • в высоких концентрациях антиауксины (например, производные 2,4-Д или бензойной кислоты) могут применяться как гербициды селективного действия.

Стимуляторы роста растений: ц итокинины

Биологическую активность цитокининов (фитогормон роста растений) связывают с влиянием на ряд физиолого-биохимических процессов, стимулированием синтеза основных биомакромолекул - белков и нуклеиновых кислот, активизацией клеточного деления, повышением интенсивности фотосинтеза, ускорением транспортных процессов в мембранах, регулированием поступления элементов питания в клетки растений, защитным действием от неблагоприятных экологических факторов. Цитокинины содержатся в растениях в малых количествах, поэтому их идентифицировали только с помощью метода масс-спектрометрии. Сейчас цитокинины обнаружены у микроорганизмов, водорослей, папоротников, мхов и многих высших растений разных таксономических групп. Цитокинины (фитогормон роста) стимулируют деление клеток и могут менять строение растительных клеток.

Молекулярными исследованиями установлено, что наибольшее содержание цитокининов (фитогормонов роста) фиксируют в семенах и плодах развивающихся растений, причем в плодах большее количество цитокининов содержится в участках, где происходит активное деление клеток. В других органах растений значительные количества цитокининов детектируются в меристемах. Считают, что основным местом синтеза цитокининов в вегетирующем растении являются апикальные меристемы корней.

Первым из открытых природных цитокининов(фитогормонов рота) был свободный зеатин. Позже было выделено производные зеатина - зеатинрибозид и зеатинриботид, которые также биологически активные. Зеатин и его производные широко распространены в растениях (соотношение этих соединений в различных растениях неодинаково). Поскольку биологическая активность рибозид- и риботидпоходных зеатина ниже, чем в зеатине, наличие их в растениях рассматривают как способ регуляции уровня цитокининовой активности тканей. Рибозид- и риботидпроизводные цитокининов могут функционировать как транспортные или запасные формы. Из других производных зеатина в растениях найдено дигидрозеатин и рибозил-транс-зеатин. Цитокинины, как и ауксины- фитогормоны, способны образовывать конъюгаты с глюкозой. Гликозиды, вероятно, важны как транспортные формы в сосудистой системе. Кроме производных зеатина, в растениях могут быть и другие производные аденина с высокой цитокининовой активностью. При обработке листьев и почек цитокинином гормон из зоны нанесения перемещается на небольшое расстояние. Эта относительная неподвижность приводит к «мобилизационному эффекту» цитокининов, благодаря которому в результате обработки цитокинином листа или его части сдерживается старение в локальной области, в которой идет поток метаболитов из других частей листа или даже других листьев.

С помощью цитокининов (фитогормонов роста) возможно:

  • регулировать рост и органогенез в культуре изолированных клеток, органов;
  • снимать апикальное доминирование, способствуя росту боковых побегов;
  • задерживать процессы старения;
  • повышать устойчивость растений к неблагоприятным условиям окружающей среды.

Регуляторы роста растений: г иббереллины

Гиббереллины(фитогормоны роста растений) выделены из растений и микроорганизмов. Среди них наиболее распространенным является гиббереллин А3 (гиберелинова кислота), который ускоряет рост, что связано со стимуляцией клеточного деления, хотя может приводить и к растяжению клеток. Под влиянием гиббереллинов возможно:

  • повысить урожай зеленой массы растений за счет усиленного роста стебля;
  • прерывать «покой» клубней картофеля, семян некоторых видов растений;
  • обеспечить синхронное прорастания семян;
  • повышать производительность и качественные показатели культур.

Обычно, в растении действуют фитогормоны одновременно двух типов, а в регуляции специфических биологических явлений, вероятно, участвуют все три основных типа фитогормонов. Цитокинины и гиббереллины играют важную роль в регуляции роста и развития на ранних стадиях, ауксины - позже, регулируя клеточное растяжение.

Регуляторы роста растений: а бсцизовая кислота

Абсцизовая кислота (АСК), фитогормон, найдена у покрытосеменных и голосеменных растений. В высших растениях АБК содержится во всех органах. Богаты на АБК (стимулятор роста растений) старые листья, зрелые плоды, семена и почки, находящиеся в состоянии покоя, меньше ее содержится в молодых активно растущих тканях (листьях, проростках). В ряде растений было выделено ксантоксин, цис-изомер, который гораздо активнее в подавлении роста, чем транс-изомер. Высокая биологическая активность ксантоксина (фитогормон) связана с его превращением из АБК. Кроме АБК (стимулятор роста), у растений выявлен ряд других соединений, которые проявляют подобную биологическую активность. Ряд соединений растительного происхождения имеет высокую цитотоксичность, ингибирует растяжение колеоптиля и имеет антиканцерогенный эффект. Как и другие фитогормоны, абсцизовая кислота обладает комплексным физиологическим действием, влияет на рост и развитие растений. Хорошо известно участие АБК в процессах роста и морфогенеза и ее действие на торможение роста растений. Именно за эту способность АБК(стимуляторы роста) относят к ингибиторам роста.

Взаимосвязи АБК с ауксинами, гиббереллинами и цитокининами в регуляции роста полностью еще не выяснена. Во многих случаях АБК выступает антагонистом всех трех групп фитогормонов: тормозит действие ИВК на усиление роста растяжением, подавляет способность гиббереллина индуцировать синтез a-амилазы и устраняет задерживающее влияние цитокинина на старение листьев. Эти эффекты АБК(ситимулятор роста) ослабляются дополнительной обработкой ИВК, совместным применением гиббереллина и цитокинина и непосредственно цитокинина. В ряде случаев АБК нейтрализует токсическое действие высоких концентраций ростактивирующих веществ. Вместе с действием ингибирования, известны примеры и стимулирующего влияния АБК на рост. Существенную роль играет АБК (фитогормон для растений) в регуляции созревания плодов, весьма перспективным является ее применение для уменьшения интенсивности транспирации и повышения устойчивости растений к засухе.

Стимуляторы роста растений: э тилен

Этилен - растворимый в воде газ, на практике широко применяют для ускорения созревания многих плодов (в овощеводстве, на плодовых).

Сейчас во всем мире на больших площадях применяют не эндогенные соединения (при их высокой стоимости, с некоторыми исключениями), а синтетические РРР. К синтетическим РРР относятся препараты, которые являются структурными аналогами природных фитогормонов, а также гербициды и ретарданты. Синтетические регуляторы роста растений стали появляться после синтеза голландским физиологом растений Ф. Кеглем (1931-35 гг.) ауксина. Вскоре был проведен синтез подобных многочисленных соединений с высокой биологической активностью. Сейчас синтезировано много веществ, которые также способны регулировать процессы роста растений, поскольку они по своей структуре похожи на фитогормоны. Наиболее перспективными оказались регуляторы роста - аналоги ауксинов типа индолилмасляной, индолилпировиноградной, нафтилуксусной и 2,4-дихлорфеноксиуксусной (2,4-Д) кислоты и другие соединения. В 1955 году был синтезирован кинетин (цитокинины). К группам синтетических регуляторов роста относят также ретарданты (ингибиторы).

В Украине традиционно проводят исследования по созданию РРР нового поколения (синтетических и природных), включая первичный скрининг этих веществ, исследования их физико-химических, физиологических и токсикологических свойств и внедрение в сельскохозяйственных производство. Анализ литературных данных по применению препаратов РРР синтетического и природного происхождения свидетельствует о перспективности этого технологического мероприятия в сельском хозяйстве. Количество зарегистрированных в Украине РРР на сегодня насчитывает более 100 наименований, что свидетельствует, скорее, о методической «ловушке», в которую попадают новые компании, которые выходят на этот рынок. Так, в лабораторных условиях большое количество органических и неорганических соединений на незабуференых средах выращивания с низким осмотическим давлением проявляют свойства РРР, в основном - эффективных стимуляторов, однако это действие не воспроизводится в полевых производственных условиях. Отсутствие воспроизводимости действия многих стимуляторов в полевых условиях, которые пытаются позиционировать как РРР, связано со сложностью процессов регуляции роста и развития растений в онтогенезе, где действие одного вещества в сверхнизких концентрациях всегда будет компенсировано. Многолетний опыт масштабного производства и применения гибберелловой кислоты в бывшем СССР не обеспечил рост урожаев. Следует также упомянуть, что ведущие компании мира по производству пестицидов, которые вместе тратят на исследования десятки миллионов долларов США ежедневно, в Украине зарегистрировали только несколько ретардантов. Среди инновационных препаратов необходимо отметить ретарданты класса циклогександионов. Целесообразно также обратить внимание на перспективность применения в технологиях органического и традиционного земледелия РРР и биостимуляторов (фитогормонов для растений) в составе комплексных препаратов на базе гидролизатов растений и животных, органических осадков водоемов, продуктов микробиологического производства и тому подобное.

Таким образом, можно сделать вывод, что фитогормонам для растений свойственен ряд общих характеристик:

  • они синтезируются в растении;
  • являются высокоэффективными регуляторами физиологических процессов;
  • их действие проявляется в очень низких концентрациях, поскольку растительные клетки очень высокочувствительны к их воздействию.

Исследование эффективности РРР проводят в ведущих научных центрах мира и Украины, а сами РРР в настоящее время - это преимущественно ретарданты и стимуляторы природного происхождения - рассматривают как неотъемлемый элемент технологий выращивания культурных растений.

Моргун с соавт., 2010 г.

Гормоны растений, или фитогормоны, вырабатываемые растениями органические вещества, отличные от питательных веществ и образующиеся обычно не там, где проявляется их действие, а в других частях растения. Эти вещества в малых концентрациях регулируют рост растений и их физиологические реакции на различные воздействия. В последние годы ряд фитогормонов удалось синтезировать, и теперь они находят применение в сельскохозяйственном производстве. Их используют, в частности, для борьбы с сорняками и для получения бессемянных плодов.

Растительный организм – это не просто масса клеток, беспорядочно растущих и размножающихся; растения и в морфологическом, и в функциональном смысле являются высокоорганизованными формами. Фитогормоны координируют процессы роста растений. Особенно отчетливо эта способность гормонов регулировать рост проявляется в опытах с культурами растительных тканей. Если выделить из растения живые клетки, сохранившие способность делиться, то при наличии необходимых питательных веществ и гормонов они начнут активно расти. Но если при этом правильное соотношение различных гормонов не будет в точности соблюдено, то рост окажется неконтролируемым и мы получим клеточную массу, напоминающую опухолевую ткань, т.е. полностью лишенную способности к дифференцировке и формированию структур. В то же время, надлежащим образом изменяя соотношение и концентрации гормонов в культуральной среде, экспериментатор может вырастить из одной-единственной клетки целое растение с корнями, стеблем и всеми прочими органами.

Химическая основа действия фитогормонов в растительных клетках еще недостаточно изучена. В настоящее время полагают, что одна из точек приложения их действия близка к гену и гормоны стимулируют здесь образование специфичной информационной РНК. Эта РНК, в свою очередь, участвует в качестве посредника в синтезе специфичных ферментов – соединений белковой природы, контролирующих биохимические и физиологические процессы.

Гормоны растений были открыты только в 1920-х годах, так что все сведения о них получены сравнительно недавно. Однако еще Ю.Сакс и Ч.Дарвин в 1880 пришли к мысли о существовании такого рода веществ. Дарвин, изучавший влияние света на рост растений, писал в своей книге Способность к движению у растений (The Power of Movement in Plants): «Когда проростки свободно выставлены на боковой свет, то из верхней части в нижнюю передается какое-то влияние, заставляющее последнюю изгибаться». Говоря о влиянии силы тяжести на корни растения, он пришел к заключению, что «только кончик (корня) чувствителен к этому воздействию и передает некоторое влияние или стимул в соседние части, заставляя их изгибаться».

В течение 1920–1930-х годов гормон, ответственный за реакции, которые наблюдал Дарвин, был выделен и идентифицирован как индолил-3-уксусная кислота (ИУК). Работы эти выполнили в Голландии Ф.Вент, Ф.Кёгль и А.Хаген-Смит. Примерно в то же время японский исследователь Е.Куросава изучал вещества, вызывающие гипертрофированный рост риса. Теперь эти вещества известны как фитогормоны гиббереллины. Позже другие исследователи, работавшие с культурами растительных тканей и органов, обнаружили, что рост культур значительно ускоряется, если добавить к ним небольшие количества кокосового молока. Поиски фактора, вызывающего этот усиленный рост, привели к открытию гормонов, которые были названы цитокининами.

Главные классы гормонов растений

Гормоны растений можно объединить в несколько главных классов в зависимости либо от их химической природы, либо от оказываемого ими действия.

Ауксины. Вещества, стимулирующие растяжение клеток растений, известны под общим названием «ауксины». Ауксины вырабатываются и накапливаются в высоких концентрациях в верхушечных меристемах (конусах нарастания побега и корня), т.е. в тех местах, где клетки особенно быстро делятся. Отсюда они перемещаются в другие части растений. Нанесенные на срез стебля ауксины ускоряют образование корней у черенков. Однако в чрезмерно больших дозах они подавляют корнеобразование. Вообще чувствительность к ауксинам у тканей корня значительно выше, чем у тканей стебля, так что дозы этих гормонов, наиболее благоприятные для роста стебля, обычно замедляют корнеобразование.

Это различие в чувствительности объясняет, почему верхушка горизонтально лежащего побега проявляет отрицательный геотропизм, т.е. изгибается кверху, а кончик корня – положительный геотропизм, т.е. изгибается к земле. Когда под действием силы тяжести ауксин скапливается на нижней стороне стебля, клетки этой нижней стороны растягиваются сильнее, чем клетки верхней стороны, и растущая верхушка стебля изгибается кверху. По-другому действует ауксин на корень. Скапливаясь на нижней его стороне, он подавляет здесь растяжение клеток. По сравнению с ними клетки на верхней стороне растягиваются сильнее, и кончик корня изгибается к земле.

Ауксины ответственны и за фототропизм – ростовые изгибы органов в ответ на одностороннее освещение. Поскольку под действием света распад ауксина в меристемах, по-видимому, несколько ускоряется, клетки на затененной стороне растягиваются сильнее, чем на освещенной, что заставляет верхушку побега изгибаться по направлению к источнику света.

Так называемое апикальное доминирование – явление, при котором присутствие верхушечной почки не дает пробуждаться боковым почкам, – тоже зависит от ауксинов. Результаты исследований позволяют считать, что ауксины в той концентрации, в какой они накапливаются в верхушечной почке, заставляют верхушку стебля расти, а перемещаясь вниз по стеблю, они тормозят рост боковых почек. Деревья, у которых апикальное доминирование выражено резко, как, например, у хвойных, имеют характерную устремленную вверх форму, в отличие от взрослых деревьев вяза или же клена.

После того как произошло опыление, стенка завязи и цветоложе быстро разрастаются; образуется крупный мясистый плод. Рост завязи связан с растяжением клеток – процессом, в котором участвуют ауксины. Теперь известно, что некоторые плоды можно получить и без опыления, если в подходящее время нанести ауксин на какой-нибудь орган цветка, например на рыльце. Такое образование плодов – без опыления – называют партенокарпией. Партенокарпические плоды лишены семян.

На плодоножке созревших плодов или на черешке старых листьев образуются ряды специализированных клеток, т.н. отделительный слой. Соединительная ткань между двумя рядами таких клеток постепенно разрыхляется, и плод или лист отделяется от растения. Это естественное отделение плодов или листьев от растения называется опадением; оно индуцируется изменениями концентрации ауксина в отделительном слое.

Из природных ауксинов шире всего распространена в растениях индолил-3-уксусная кислота (ИУК). Однако этот природный ауксин применяется в сельском хозяйстве значительно реже, чем такие синтетические ауксины, как индолилмасляная кислота, нафтилуксусная кислота и 2,4-дихлорфеноксиуксусная кислота (2,4-Д). Дело в том, что ИУК под действием ферментов растения непрерывно разрушается, тогда как синтетические соединения не подвержены ферментативному разрушению, и потому малые их дозы способны вызывать заметный и долго сохраняющийся эффект.

Синтетические ауксины находят широкое применение. Их используют для усиления корнеобразования у черенков, которые без этого плохо укореняются; для получения партенокарпических плодов, например у томатов в теплицах, где условия затрудняют опыление; для того чтобы вызвать у плодовых деревьев опадение части цветков и завязей (сохранившиеся плоды при таком «химическом прореживании» оказываются крупнее и лучше); чтобы предотвратить предуборочное опадение плодов у цитрусовых и некоторых семечковых, например у яблонь, т.е. чтобы отсрочить их естественное опадение. В высоких концентрациях синтетические ауксины применяются в качестве гербицидов для борьбы с некоторыми сорняками.

Гиббереллины. Гиббереллины широко распространены в растениях и регулируют целый ряд функций. К 1965 было идентифицировано 13 молекулярных форм гиббереллинов, очень сходных химически, но весьма различающихся по своей биологической активности. Среди синтетических гиббереллинов чаще всего применяется вырабатываемая микробиологической промышленностью гибберелловая кислота.

Важный физиологический эффект гиббереллинов – ускорение роста растений. Известна, например, генетическая карликовость у растений, при которой резко укорочены междоузлия (участки стебля между узлами, от которых отходят листья); как выяснилось, это связано с тем, что у таких растений генетически заблокировано образование гиббереллинов в процессе метаболизма. Если, однако, ввести в них гиббереллины извне, то растения будут расти и развиваться нормально.

Многим двулетним растениям для того, чтобы выбросить стрелку и зацвести, требуется в течение определенного времени пребывание либо при низкой температуре, либо на коротком дне, а иногда и то и другое. Обработав такие растения гибберелловой кислотой, их можно заставить зацвести в условиях, при которых возможен только вегетативный рост.

Подобно ауксинам, гиббереллины способны вызывать партенокарпию. В Калифорнии их регулярно применяют для обработки виноградников. В результате такой обработки грозди получаются более крупными и лучше сформированными.

Во время прорастания семян решающую роль играет взаимодействие гиббереллинов и ауксинов. После набухания семени в зародыше синтезируются гиббереллины, которые индуцируют синтез ферментов, ответственных за образование ауксина. Гиббереллины также ускоряют рост первичного корешка зародыша в то время, когда под влиянием ауксина оболочка семени разрыхляется и зародыш растет. Первым из семени появляется корешок, а за ним и само растеньице. Высокие концентрации ауксина вызывают быстрое удлинение стебелька зародыша, и в конце концов верхушка проростка пробивает почву.

Цитокинины. Гормоны, известные как цитокинины, или кинины, стимулируют не растяжение, а деление клеток. Цитокинины образуются в корнях и отсюда поступают в побеги. Возможно, они синтезируются также в молодых листьях и почках. Первый открытый цитокинин – кинетин – был получен с использованием ДНК спермы сельди.

Цитокинины – «великие организаторы», регулирующие рост растений и обеспечивающие у высших растений нормальное развитие их формы и структур. В стерильных тканевых культурах добавление цитокининов в надлежащей концентрации вызывает дифференцировку; появляются примордии – нерасчлененные зачатки органов, т.е. группы клеток, из которых со временем развиваются различные части растения. Обнаружение этого факта в 1940 послужило основой для последующих успешных экспериментов. В начале 1960-х годов научились уже выращивать целые растения из одной недифференцированной клетки, помещенной в искусственную питательную среду.

Еще одно важное свойство цитокининов – их способность замедлять старение, что особенно ценно для зеленых листовых овощей. Цитокинины способствуют удержанию в клетках ряда веществ, в частности аминокислот, которые могут быть направлены на ресинтез белков, необходимых для роста растений и обновления его тканей. Благодаря этому замедляются старение и пожелтение, т.е. листовые овощи не так быстро теряют товарный вид. В настоящее время предпринимаются попытки использовать один из синтетических цитокининов, а именно бензиладенин, в качестве ингибитора старения многих зеленых овощей, например салата, брокколи и сельдерея.

Гормоны цветения. Гормонами цветения считают флориген и верналин. Предположение о существовании особого фактора цветения высказал в 1937 русский исследователь М.Чайлахян. Позднейшие работы Чайлахяна позволили сделать вывод, что флориген состоит их двух главных компонентов: гиббереллинов и еще одной группы факторов цветения, названных антезинами. Для зацветания растений необходимы оба этих компонента.

Предполагается, что гиббереллины необходимы длиннодневным растениям, т.е. таким, которым для зацветания требуется достаточно длительный светлый период суток. Антезины же стимулируют цветение короткодневных растений, зацветающих лишь тогда, когда длина дня не превышает определенного допустимого максимума. По-видимому, антезины образуются в листьях.

Гормон цветения верналин (выявленный И.Мельхерсом в 1939) необходим, как полагают, двулетним растениям, нуждающимся на протяжении некоторого времени в воздействии низких температур, например зимних холодов. Он образуется в зародышах прорастающих семян или в делящихся клетках верхушечных меристем взрослых растений.

Дормины. Дормины – это ингибиторы роста растений: под их воздействием активно растущие вегетативные почки возвращаются в состояние покоя. Это один из последних открытых классов фитогормонов. Они были обнаружены почти одновременно, в 1963 и 1964, английскими и американскими исследователями. Последние назвали главное выделенное ими вещество «абсцизин II». По своей химической природе абсцизин II оказался абсцизовой кислотой и идентичен дормину, открытому Ф.Вейрингом. Возможно, он также регулирует опадение листьев и плодов.

Витамины группы В. К фитогормонам иногда относят и некоторые витамины группы В, а именно тиамин, ниацин (никотиновую кислоту) и пиридоксин. Эти вещества, образующиеся в листьях, регулируют не столько формообразовательные процессы, сколько рост и питание растений.

Синтетические ретарданты. Под действием некоторых синтетических фитогормонов, созданных в последние полвека, укорачиваются междоузлия растений, стебли становятся более жесткими, а листья приобретают темно-зеленую окраску. Повышается устойчивость растений к засухе, холоду и загрязнению воздуха. У некоторых культурных растений, например у яблонь или азалий, эти вещества стимулируют зацветание и тормозят вегетативный рост. В плодоводстве и при выращивании цветов в теплицах широко применяются три таких вещества – фосфон, цикоцел и алар.

Список литературы

Рейвн П., Эверт Р., Айкхорн Э. Современная ботаника, тт. 1–2. М., 1990

Для подготовки данной работы были использованы материалы с сайта http://bio.freehostia.com

ГОРМОНЫ РАСТЕНИЙ
или фитогормоны, вырабатываемые растениями органические вещества, отличные от питательных веществ и образующиеся обычно не там, где проявляется их действие, а в других частях растения. Эти вещества в малых концентрациях регулируют рост растений и их физиологические реакции на различные воздействия. В последние годы ряд фитогормонов удалось синтезировать, и теперь они находят применение в сельскохозяйственном производстве. Их используют, в частности, для борьбы с сорняками и для получения бессемянных плодов. Растительный организм - это не просто масса клеток, беспорядочно растущих и размножающихся; растения и в морфологическом, и в функциональном смысле являются высокоорганизованными формами. Фитогормоны координируют процессы роста растений. Особенно отчетливо эта способность гормонов регулировать рост проявляется в опытах с культурами растительных тканей. Если выделить из растения живые клетки, сохранившие способность делиться, то при наличии необходимых питательных веществ и гормонов они начнут активно расти. Но если при этом правильное соотношение различных гормонов не будет в точности соблюдено, то рост окажется неконтролируемым и мы получим клеточную массу, напоминающую опухолевую ткань, т.е. полностью лишенную способности к дифференцировке и формированию структур. В то же время, надлежащим образом изменяя соотношение и концентрации гормонов в культуральной среде, экспериментатор может вырастить из одной-единственной клетки целое растение с корнями, стеблем и всеми прочими органами. Химическая основа действия фитогормонов в растительных клетках еще недостаточно изучена. В настоящее время полагают, что одна из точек приложения их действия близка к гену и гормоны стимулируют здесь образование специфичной информационной РНК. Эта РНК, в свою очередь, участвует в качестве посредника в синтезе специфичных ферментов - соединений белковой природы, контролирующих биохимические и физиологические процессы. Гормоны растений были открыты только в 1920-х годах, так что все сведения о них получены сравнительно недавно. Однако еще Ю.Сакс и Ч.Дарвин в 1880 пришли к мысли о существовании такого рода веществ. Дарвин, изучавший влияние света на рост растений, писал в своей книге Способность к движению у растений (The Power of Movement in Plants): "Когда проростки свободно выставлены на боковой свет, то из верхней части в нижнюю передается какое-то влияние, заставляющее последнюю изгибаться". Говоря о влиянии силы тяжести на корни растения, он пришел к заключению, что "только кончик (корня) чувствителен к этому воздействию и передает некоторое влияние или стимул в соседние части, заставляя их изгибаться". В течение 1920-1930-х годов гормон, ответственный за реакции, которые наблюдал Дарвин, был выделен и идентифицирован как индолил-3-уксусная кислота (ИУК). Работы эти выполнили в Голландии Ф.Вент, Ф.Кегль и А.Хаген-Смит. Примерно в то же время японский исследователь Е.Куросава изучал вещества, вызывающие гипертрофированный рост риса. Теперь эти вещества известны как фитогормоны гиббереллины. Позже другие исследователи, работавшие с культурами растительных тканей и органов, обнаружили, что рост культур значительно ускоряется, если добавить к ним небольшие количества кокосового молока. Поиски фактора, вызывающего этот усиленный рост, привели к открытию гормонов, которые были названы цитокининами.

ГЛАВНЫЕ КЛАССЫ ГОРМОНОВ РАСТЕНИЙ


Гормоны растений можно объединить в несколько главных классов в зависимости либо от их химической природы, либо от оказываемого ими действия.
Ауксины. Вещества, стимулирующие растяжение клеток растений, известны под общим названием "ауксины". Ауксины вырабатываются и накапливаются в высоких концентрациях в верхушечных меристемах (конусах нарастания побега и корня), т.е. в тех местах, где клетки особенно быстро делятся. Отсюда они перемещаются в другие части растений. Нанесенные на срез стебля ауксины ускоряют образование корней у черенков. Однако в чрезмерно больших дозах они подавляют корнеобразование. Вообще чувствительность к ауксинам у тканей корня значительно выше, чем у тканей стебля, так что дозы этих гормонов, наиболее благоприятные для роста стебля, обычно замедляют корнеобразование. Это различие в чувствительности объясняет, почему верхушка горизонтально лежащего побега проявляет отрицательный геотропизм, т.е. изгибается кверху, а кончик корня - положительный геотропизм, т.е. изгибается к земле. Когда под действием силы тяжести ауксин скапливается на нижней стороне стебля, клетки этой нижней стороны растягиваются сильнее, чем клетки верхней стороны, и растущая верхушка стебля изгибается кверху. По-другому действует ауксин на корень. Скапливаясь на нижней его стороне, он подавляет здесь растяжение клеток. По сравнению с ними клетки на верхней стороне растягиваются сильнее, и кончик корня изгибается к земле. Ауксины ответственны и за фототропизм - ростовые изгибы органов в ответ на одностороннее освещение. Поскольку под действием света распад ауксина в меристемах, по-видимому, несколько ускоряется, клетки на затененной стороне растягиваются сильнее, чем на освещенной, что заставляет верхушку побега изгибаться по направлению к источнику света. Так называемое апикальное доминирование - явление, при котором присутствие верхушечной почки не дает пробуждаться боковым почкам, - тоже зависит от ауксинов. Результаты исследований позволяют считать, что ауксины в той концентрации, в какой они накапливаются в верхушечной почке, заставляют верхушку стебля расти, а перемещаясь вниз по стеблю, они тормозят рост боковых почек. Деревья, у которых апикальное доминирование выражено резко, как, например, у хвойных, имеют характерную устремленную вверх форму, в отличие от взрослых деревьев вяза или же клена. После того как произошло опыление, стенка завязи и цветоложе быстро разрастаются; образуется крупный мясистый плод. Рост завязи связан с растяжением клеток - процессом, в котором участвуют ауксины. Теперь известно, что некоторые плоды можно получить и без опыления, если в подходящее время нанести ауксин на какой-нибудь орган цветка, например на рыльце. Такое образование плодов - без опыления - называют партенокарпией. Партенокарпические плоды лишены семян. На плодоножке созревших плодов или на черешке старых листьев образуются ряды специализированных клеток, т.н. отделительный слой. Соединительная ткань между двумя рядами таких клеток постепенно разрыхляется, и плод или лист отделяется от растения. Это естественное отделение плодов или листьев от растения называется опадением; оно индуцируется изменениями концентрации ауксина в отделительном слое.См. также ЛИСТ. Из природных ауксинов шире всего распространена в растениях индолил-3-уксусная кислота (ИУК). Однако этот природный ауксин применяется в сельском хозяйстве значительно реже, чем такие синтетические ауксины, как индолилмасляная кислота, нафтилуксусная кислота и 2,4-дихлорфеноксиуксусная кислота (2,4-Д). Дело в том, что ИУК под действием ферментов растения непрерывно разрушается, тогда как синтетические соединения не подвержены ферментативному разрушению, и потому малые их дозы способны вызывать заметный и долго сохраняющийся эффект. Синтетические ауксины находят широкое применение. Их используют для усиления корнеобразования у черенков, которые без этого плохо укореняются; для получения партенокарпических плодов, например у томатов в теплицах, где условия затрудняют опыление; для того чтобы вызвать у плодовых деревьев опадение части цветков и завязей (сохранившиеся плоды при таком "химическом прореживании" оказываются крупнее и лучше); чтобы предотвратить предуборочное опадение плодов у цитрусовых и некоторых семечковых, например у яблонь, т.е. чтобы отсрочить их естественное опадение. В высоких концентрациях синтетические ауксины применяются в качестве гербицидов для борьбы с некоторыми сорняками.
Гиббереллины. Гиббереллины широко распространены в растениях и регулируют целый ряд функций. К 1965 было идентифицировано 13 молекулярных форм гиббереллинов, очень сходных химически, но весьма различающихся по своей биологической активности. Среди синтетических гиббереллинов чаще всего применяется вырабатываемая микробиологической промышленностью гибберелловая кислота. Важный физиологический эффект гиббереллинов - ускорение роста растений. Известна, например, генетическая карликовость у растений, при которой резко укорочены междоузлия (участки стебля между узлами, от которых отходят листья); как выяснилось, это связано с тем, что у таких растений генетически заблокировано образование гиббереллинов в процессе метаболизма. Если, однако, ввести в них гиббереллины извне, то растения будут расти и развиваться нормально. Многим двулетним растениям для того, чтобы выбросить стрелку и зацвести, требуется в течение определенного времени пребывание либо при низкой температуре, либо на коротком дне, а иногда и то и другое. Обработав такие растения гибберелловой кислотой, их можно заставить зацвести в условиях, при которых возможен только вегетативный рост. Подобно ауксинам, гиббереллины способны вызывать партенокарпию. В Калифорнии их регулярно применяют для обработки виноградников. В результате такой обработки грозди получаются более крупными и лучше сформированными. Во время прорастания семян решающую роль играет взаимодействие гиббереллинов и ауксинов. После набухания семени в зародыше синтезируются гиббереллины, которые индуцируют синтез ферментов, ответственных за образование ауксина. Гиббереллины также ускоряют рост первичного корешка зародыша в то время, когда под влиянием ауксина оболочка семени разрыхляется и зародыш растет. Первым из семени появляется корешок, а за ним и само растеньице. Высокие концентрации ауксина вызывают быстрое удлинение стебелька зародыша, и в конце концов верхушка проростка пробивает почву.
Цитокинины. Гормоны, известные как цитокинины, или кинины, стимулируют не растяжение, а деление клеток. Цитокинины образуются в корнях и отсюда поступают в побеги. Возможно, они синтезируются также в молодых листьях и почках. Первый открытый цитокинин - кинетин - был получен с использованием ДНК спермы сельди. Цитокинины - "великие организаторы", регулирующие рост растений и обеспечивающие у высших растений нормальное развитие их формы и структур. В стерильных тканевых культурах добавление цитокининов в надлежащей концентрации вызывает дифференцировку; появляются примордии - нерасчлененные зачатки органов, т.е. группы клеток, из которых со временем развиваются различные части растения. Обнаружение этого факта в 1940 послужило основой для последующих успешных экспериментов. В начале 1960-х годов научились уже выращивать целые растения из одной недифференцированной клетки, помещенной в искусственную питательную среду. Еще одно важное свойство цитокининов - их способность замедлять старение, что особенно ценно для зеленых листовых овощей. Цитокинины способствуют удержанию в клетках ряда веществ, в частности аминокислот, которые могут быть направлены на ресинтез белков, необходимых для роста растений и обновления его тканей. Благодаря этому замедляются старение и пожелтение, т.е. листовые овощи не так быстро теряют товарный вид. В настоящее время предпринимаются попытки использовать один из синтетических цитокининов, а именно бензиладенин, в качестве ингибитора старения многих зеленых овощей, например салата, брокколи и сельдерея.
Гормоны цветения. Гормонами цветения считают флориген и верналин. Предположение о существовании особого фактора цветения высказал в 1937 русский исследователь М.Чайлахян. Позднейшие работы Чайлахяна позволили сделать вывод, что флориген состоит их двух главных компонентов: гиббереллинов и еще одной группы факторов цветения, названных антезинами. Для зацветания растений необходимы оба этих компонента. Предполагается, что гиббереллины необходимы длиннодневным растениям, т.е. таким, которым для зацветания требуется достаточно длительный светлый период суток. Антезины же стимулируют цветение короткодневных растений, зацветающих лишь тогда, когда длина дня не превышает определенного допустимого максимума. По-видимому, антезины образуются в листьях. Гормон цветения верналин (выявленный И.Мельхерсом в 1939) необходим, как полагают, двулетним растениям, нуждающимся на протяжении некоторого времени в воздействии низких температур, например зимних холодов. Он образуется в зародышах прорастающих семян или в делящихся клетках верхушечных меристем взрослых растений.
Дормины. Дормины - это ингибиторы роста растений: под их воздействием активно растущие вегетативные почки возвращаются в состояние покоя. Это один из последних открытых классов фитогормонов. Они были обнаружены почти одновременно, в 1963 и 1964, английскими и американскими исследователями. Последние назвали главное выделенное ими вещество "абсцизин II". По своей химической природе абсцизин II оказался абсцизовой кислотой и идентичен дормину, открытому Ф.Вейрингом. Возможно, он также регулирует опадение листьев и плодов.
Витамины группы В. К фитогормонам иногда относят и некоторые витамины группы В, а именно тиамин, ниацин (никотиновую кислоту) и пиридоксин. Эти вещества, образующиеся в листьях, регулируют не столько формообразовательные процессы, сколько рост и питание растений.
Синтетические ретарданты. Под действием некоторых синтетических фитогормонов, созданных в последние полвека, укорачиваются междоузлия растений, стебли становятся более жесткими, а листья приобретают темно-зеленую окраску. Повышается устойчивость растений к засухе, холоду и загрязнению воздуха. У некоторых культурных растений, например у яблонь или азалий, эти вещества стимулируют зацветание и тормозят вегетативный рост. В плодоводстве и при выращивании цветов в теплицах широко применяются три таких вещества - фосфон, цикоцел и алар.

ЛИТЕРАТУРА


Рейвн П., Эверт Р., Айкхорн Э. Современная ботаника, тт. 1-2. М., 1990

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ГОРМОНЫ РАСТЕНИЙ" в других словарях:

    ГОРМОНЫ РАСТЕНИЙ, см. ФИТОГОРМОНЫ …

    - … Википедия

    ГОРМОНЫ, химические вещества, вырабатываемые живыми клетками, которые влияют на метаболизм клеток в других частях тела. У МЛЕКОПИТАЮЩИХ гормоны вырабатываются железами ЭНДОКРИННОЙ СИСТЕМЫ и выделяются непосредственно в кровь. Они осуществляют… … Научно-технический энциклопедический словарь

    - (др. греч. ὁρμάω возбуждаю, побуждаю) биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен… … Википедия

    Органические соединения, вырабатываемые определенными клетками и предназначенные для управления функциями организма, их регуляции и координации. У высших животных есть две регуляторных системы, с помощью которых организм приспосабливается к… … Энциклопедия Кольера

    - (от греч. hormao привожу в движение, побуждаю), биологически активные вещества, выделяемые железами внутр. секреции или скоплениями специа лизир. клеток организма и оказывающие целенаправленное действие на др. органы и ткани. Термин «Г.»… … Биологический энциклопедический словарь

    Современная энциклопедия

    - (от греч. hormao возбуждаю привожу в движение), биологически активные вещества, вырабатываемые в организме специализированными клетками или органами (железами внутренней секреции) и оказывающие целенаправленное влияние на деятельность других… … Большой Энциклопедический словарь

    Метаболиты, наружные гормоны, экзокрины, аллелохемики, органические вещества, выделяемые в окружающую среду организмами в процессе жизнедеятельности, а также при разложении трупов животных, растений или микроорганизмов. Эти вещества через внешнюю … Экологический словарь

    Гормоны - (от греческого hormao возбуждаю, привожу в движение), биологически активные вещества, вырабатываемые в организме специализированными клетками или органами (железами внутренней секреции) и оказывающие влияние на деятельность других органов и… … Иллюстрированный энциклопедический словарь

Книги

  • Гормоны, регуляторы роста и их использование в селекции и технологии выращивания сельскохозяйственн. , Клопов Михаил Иванович , Максимов Владимир Ильич , Гончаров Андрей Владимирович . В учебном пособии изложен материал о строении и биологической роли гормонов, ферментов и простагландинов в жизнедеятельности животных. Кратко изложена связь гормонов с различными факторами… Серия: Учебники для вузов. Специальная литература Издатель: Лань ,
  • Гормоны, регуляторы роста и их использование в селекции и технологии выращивания сельскохозяйственных растений и животных. Учебное пособие. Гриф УМО МО РФ ,