Линейный коэффициент поглощения рентгеновских лучей. Поглощение и рассеяние рентгеновских лучей

При прохождении направленного пучка рентгеновских лучей через вещество интенсивность пучка вдоль начального направления ослабляется двумя различными путями :

  • 1. путем исчезновения фотона - так называемое истинное поглощение,
  • 2. путем изменения первоначального направления фотона - рассеяние. Явление рассеяния рентгеновских лучей

совершенно аналогично рассеянию, которое испытывает свет при прохождении через мутную среду. Разница только в том, что “мутность” среды для света обусловлена взвешенными в ней достаточно крупными частицами с показателем преломления, отличным от показателя преломления среды. Для рентгеновских лучей, вследствие их малой длины волны, любая прозрачная для света среда является “мутной”. В этом случае рассеивающими центрами являются сами атомы или молекулы вещества. Аналогичное молекулярное рассеяние наблюдается и для света. Но оно представляет собой в случае света очень слабый эффект. Более подробно вопрос о рассеянии будет рассмотрен в следующей главе.

Рассмотрим ослабление интенсивности / рентгеновского луча, идущего через вещество в направлении оси х. На поверхности вещества положим х = 0, / = / 0 , а интенсивность луча на глубине х - 1 Х. Определим изменение интенсивности dl x рентгеновского луча на пути dx между точками с координатами х и х + dx. Очевидно, что относительное уменьшение интенсивности будет пропорционально dx:

где коэффициент пропорциональности р называется линейным коэффициентом ослабления и зависит от поглощающего вещества и длины волны рентгеновского луча. Из (2.6) следует, что размерность линейного коэффициента ослабления равна см" 1 , а по физическому смыслу линейный коэффициент ослабления представляет собой относительное изменение интенсивности на единице пути. Интегрируя (2.6) по х, получим закон ослабления рентгеновских лучей слоем конечной толщины х:

Однако величина линейного коэффициента ослабления будет зависеть от реальной плотности материала. Например, если мы имеем два образца одной и той же толщины и одного и того же химического состава, но разной плотности, вследствие наличия в одном из них пор, то линейный коэффициент ослабления для пористого объекта будет меньше, чем для непористого. Необходимо было ввести величину, которая определялась бы только элементным составом вещества. Основанием для получения такого коэффициента послужил тот факт, что фотоэлектрическое поглощение рентгеновских лучей в веществе - процесс атомный и расчет величины ослабления интенсивности можно проводить, учитывая не толщину слоя, а количество вещества (его массу), находящегося в облучаемом объеме.

Рассмотрим рентгеновский луч сечением 1 см 2 . Энергия этого луча численно равна интенсивности /. Найдем ослабление такого луча после прохождения единицы массы вещества. Если р - плотность вещества, то на путь dx приходится масса dm = р dx. Относительное изменение интенсивности на пути dx , т.е. при прохождении массы dm , будет пропорционально величине этой массы:

где коэффициент пропорциональности называется

массовым коэффициентом ослабления. Из (2.8) следует, что размерность массового коэффициента ослабления равна см 2 г“ а по физическому смыслу массовый коэффициент ослабления представляет собой относительное изменение интенсивности единицей массы вещества. Обозначим интенсивность луча после прохождения массы т через 1 т и получим закон ослабления рентгеновских лучей слоем конечной массы т:

Характерной особенностью массового коэффициента ослабления является его независимость от физического состояния вещества.

Наряду с линейным и массовым коэффициентами ослабления так же вводится и атомный коэффициент ослабления i a с размерностью см, представляющий собой относительное изменение интенсивности пучка лучей сечением 1 см 2 , приходящееся на один атом.

где А - атомный вес, численно равный массе одного грамма- моля, a N A - число Авогадро, равное числу атомов в грамм- атоме^ = 6.023x10 28 моль" 1).

Акты поглощения и рассеяния рентгеновского излучения можно считать независимыми, и, следовательно, можно положить атомный коэффициент ослабления х а равным сумме атомных коэффициентов истинного поглощения т а и рассеяния а а:

Аналогично можно представить и массовые или линейные коэффициенты ослабления р т (ц) равными сумме массовых или, соответственно, линейных коэффициентов истинного поглощения т ш (т) и рассеяния а т (ст).

Разделив атомный коэффициент истинного поглощения

х а на число электронов в атоме Z, получим электронный коэффициент истинного поглощения (т е)*:

где нижний индекс К указывает на то, что определенный в (2.11) электронный коэффициент истинного поглощения представляет собой среднее значение для всех электронов атома, включая внутренние ЛГ-электроны. Выражение (2.11) справедливо в случае X т.е. в случае, когда могут поглощать все электроны атома.

Атомный коэффициент истинного поглощения можно рассматривать как сумму частичных атомных коэффициентов истинного поглощения x q для отдельных уровней q атома:

где x q определяется фотоэффектом только одного q -уровня атома. Частичный атомный коэффициент истинного поглощения, таким образом, представляет собой площадь эффективного сечения атома для ионизации ^-уровня путем захвата фотона.

Обозначим химическую формулу сложного вещества следующим образом:

где Qi - символы элементов, п { - число атомов в молекуле. Так же введем обозначения - атомный вес и (т ш), - массовый коэффициент истинного поглощения элемента Q h Считая процессы поглощения отдельными атомами молекулы (смеси веществ) независимыми друг от друга и, следовательно, допуская справедливость закона аддитивности для атомных (массовых) коэффициентов истинного поглощения, найдем молекулярный массовый коэффициент поглощения:

где М - молекулярный вес. Эта формула может быть преобразована путем введения весовых концентраций С, = riiAJM элементов Q{.

Полученная формула удобна для расчета массовых коэффициентов поглощения газовых смесей, сплавов, твердых и жидких растворов и т.д.

Справедливость закона аддитивности подтверждается экспериментом. Отступления от этого закона проявляются лишь на тонкой структуре спектров поглощения (более подробно см. ).

Экспериментальные исследования показали, что атомный коэффициент поглощения всеми уровнями атома зависит от атомного номера Z и длины волны X и справедливо приближенное выражение:

где X в см, а коэффициент С зависит от области длин волн и меняется при переходе через значения Х к, X Lh Хщ и т.д., относящиеся к определенным длинам волн, при которых еще происходит ионизация соответствующих уровней.

Величина коэффициентов истинного поглощения зависит от длины волны X падающего излучения и атомного номера элемента. Если для данного элемента построить зависимости х а и х т от X (рис. 2.8), то оказывается, что возрастание х а и х т с увеличением X происходит неравномерно: наблюдается ряд скачков, когда длина волны, увеличиваясь, проходит через некоторые, свои для каждого вещества, значения, являющиеся краями соответствующих полос поглощения, или порогами поглощения для ^-уровня атома (“д-край поглощения”), где мы можем получить два значения х т по обе стороны от этой границы. Обозначим массовый коэффициент поглощения с коротковолновой границы от Х д через x m (X q) 9 а с длинноволновой - x" m (X q), очевидно, что х т (Х я) > x" m (X q). Отношение

называется скачком поглощения ^-уровня. В промежутках между скачками возрастание коэффициентов подчиняется закону X 3 . На рис. 2.9 представлена зависимость х а от Z для Х= 1А.


Рис . 2.8.

Наличие скачков поглощения на зависимостях т т от X и Z приводит к необходимости подбора излучения при проведении структурных исследований материалов, поскольку, если длина волны падающих лучей чуть меньше края полосы поглощения К -серии исследуемого элемента, то не только уменьшается интенсивность дифрагированного излучения из-за сильного поглощения, но и возникает очень интенсивная флуоресценция, которая резко понижает контрастность рентгенограммы, создавая на ней большой фон. Аналогичный, но несколько более слабый эффект наблюдается при исследованиях тяжелых элементов, когда длина волны падающих лучей чуть меньше края полосы поглощения L- серии. Поскольку при исследованиях


Рис. 2.9. Зависимость атомного коэффициента поглощения т а от атомного номера вещества Z для X = 1 А.

С другой стороны, благодаря скачкам поглощения, появляется возможность использования селективно поглощающих экранов (фильтров) для изменения спектрального состава излучения, идущего от трубки. Наиболее широко используется Р-фильтр, позволяющий отделить a-линию характеристического спектра от сопровождающей ее р. Изменение распределения интенсивности в спектре рентгеновского излучения при прохождении его через p-фильтр показано на рис. 2.10.

Рис. 2.10.

Ясно, что край полосы поглощения атомов вещества, из которого состоит Р-фильтр, должен лежать между а- и P-линиями характеристического спектра вещества анода рентгеновской трубки. Это условие выполняется, если атомный номер вещества фильтра на единицу меньше атомного номера вещества анода из Cr, Fe, Со, Ni, Си. Фильтром для излучения Мо могут служить как ниобий, так и цирконий.

При соответствующем подборе толщины фильтра Р- линия окажется ослабленной в несколько сотен раз сильнее, чем а-линия.

Лабораторная работа ¹ 62

Задача ¹3.

Изучение поглощения рентгеновских лучей.

§1.Взаимодействие рентгеновских лучей с веществом.

При прохождении пучка рентгеновских лучей через веществ о его интенсивность уменьшается. Это уменьшение объясняется сле дующими причи- нами:

1.томсоновским или когерентным рассеянием;

2.комптоновским или некогерентным рассеянием;

3.поглощением рентгеновских лучей в веществе.

Томсоновское рассеяние происходит без изменения энерги и рассеянных квантов. После рассеяния они лишь изменяют направление своего движения, выходя, таким образом, из первичного рентгеновского п учка.

При комптоновском рассеянии из атомов выбиваются, так наз ываемые электроны отдачи, на что расходуется часть энергии кванта и, следовательно, при этом увеличивается длина его волны.

Наконец, в акте поглощения рентгеновских лучей квант исчезает полностью. Его энергия расходуется на ионизацию атома и на сообщ ение кинетической энергии выброшенному из атома электрону.

Для монохроматического излучения можно считать, что вызв анное тремя перечисленными причинами уменьшение интенсивности рентгеновского пучка /dI / при прохождении тонкого слоя /dx/ вещества пропорционально интенсивности пучка и толщине ослабляющего слоя.

dI = − Iμ dx

Коэффициент пропорциональности μ называется линейным коэффициентом ослабления.

Лабораторная работа ¹ 62

на ослабляющего слоя. Коэффициент μ имеет размерность L− 1 и измеряется обычно в см− 1 . Он может быть представлен в виде суммы двух величин:

Преобразуем формулу (1) к виду, более удобному для практиче ского использования. Пусть поперечное сечение рентгеновского пу чка равноS, а плотность ослабляющего вещества ρ . Перепишем показатель степени в (1) следующим образом:

Величина r называется массовым коэффициентом ослабления. Она име-

ет размерность L2 M − 1 и измеряется обычно в ñì 2 ã . Как и раньше мы можем написать:

массовый коэффициент рассеяния,

Массовый коэффициент

истинного

поглощения.

Введение массовых коэффициентов оказывается удобным, по тому что при этом отпадает необходимость определять коэффициенты ослабления для

всего бесконечного множества химических соединений, т.к. r для сложных

Лабораторная работа ¹ 62

веществ очень просто определяется через ρ для составляющих их элементов.

Это возможно, потому что поглощение и рассеяние рентгеновских лучей осуществляется в основном внутренними электронами атома, со стояние которых не зависит от того, входит атом в химическое соединение ил и нет.

Если обозначить через pi весовую долю, которую i-ый элемент составля-

ет от общего веса соединения (причем Σ pi = 1), то поверхностная плотность

для каждого элемента в отдельности будет равна pi m и ослабление, давае-

Общее ослабление будет определятся произведением сомно жителей для отдельных элементов.

F m I

F m I

J × p i

M×SG J × pi

Π e

H r K

i H r K

Очевидно, что сумма, стоящая в показателе степени экспоне нты, является массовым коэффициентом ослабления для сложного вещества

μ I

= Σ G

ρ K i

Преобразуем формулу (6) теперь еще раз, умножив и разделив к аждое слагаемое в показателе степени на Ai - массу одного атома i-го сорта. Так как

элемента, приходящееся на 1 см2 ñëîÿ.

μ I

ρ K i

F m I

G J A i

I 0 e

Sb m g n

H r K i

à i i

Величина b μ à g

имеет размерность

и называется эффективным сече-

нием. Она обозначает ту площадь, которую мы должны приписа ть атому, чтобы объяснить его поглощающую и рассеивающую сущность. Конечно, она не

Лабораторная работа ¹ 62

имеет ничего общего с действительной площадью поперечного сечения атома.

Мы видим, таким образом, что ослабление рентгеновских луч ей определя-

ется суммой эффективных сечений всех атомов, находящихся на 1 см2 ослабляющего слоя. Эту сумму можно получить, просуммировав эффективные сече- ния атомов одной молекулы, а затем умножив на общее число м олекул, при-

ходящихся на 1см2 . Таким образом,

ãäå σ à è σ m соответственно атомное и молекулярное сечение рассеяния, τ à è τ m - атомное и молекулярное сечение истинного поглощения.

Относительная роль рассеяния и поглощения в ослаблении р ентгеновских лучей различна при различных длинах волн. Если длина волны доста-

точно велика (λ = 1 A), òî σ пренебрежимо мала по сравнению с τ , и мы можем считать, что все ослабление рентгеновских лучей вызвано истинным поглощением. В настоящей работе с учетом этого обстоятель ства исследуются законы поглощения рентгеновских лучей в веществе.

§2.Поглощение рентгеновских лучей в веществе.

Рассмотрим подробнее законы поглощения рентгеновских л учей веществом. Мы уже упоминали во введении, что электроны занимают в атоме различные энергетические уровни K,L,M и т.д., соответствующие зна чениям главного квантового числа n = 1, 2, 3. Каждый из этих уровней делится на подуровни, число которых равно 2 и -1. Рентгеновский квант может удалить электрон с какого-либо подуровня только в том случае, если его энергия превышает потенциал ионизации данного подуровня. Для большей наглядности изобразим на одном и том же рисунке зависимость энергии квант а от длины волны и систему энергетических уровней атома (см рис.1). Как известно, энергия

Она изображается спадающей кривой. Обозначим символом λ k длину волны, при которой энергия кванта равна энергии K-уровня. При λ < λ k , энергия

Лабораторная работа ¹ 62

кванта превышает потенциал ионизации любого подуровня а тома, поэтому поглощение будет осуществляться электронами всех подур овней. Коэффициент массового поглощения в этой области будет представле н суммой коэффициентов, учитывающих поглощение отдельными подуровнями.

τ I

τ I

τ I

τ I

τ I

J + K

ρ K

ρ K K

ρ K L

ρ K L

ρ K L

Как показывает опыт, изменение в этой области происходит по степенно-

му закону

C 1 λS 1

причем S1 ≈ 3.

Однако, если длина волны кванта хотя бы незначительно пре вышаетλ k , то его энергия уже не достаточна для ионизации K-уровня. Поэто му приλ > λ k K-электроны выключаются из поглощения, что приводит к резк ому уменьшению коэффициента поглощения. При λ k будет иметь место, как говорят, K- скачок поглощения. Длина волны λ k называется K-краем поглощения.

В то же время поглощение рентгеновских лучей остальными п одуровнями

Лабораторная работа ¹ 62

скачка не испытывают и продолжают увеличиваться. Очевидн о, что в области длин волн λ k < λ < λ L I массовый коэффициент поглощения по-прежнему мо-

жет быть представлен суммой коэффициентов, относящихся к различным подуровням, однако член, связанный с K-уровнем будет в этой сумме отсутствовать.

τ I

τ I

τ I

τ I

τ I

ρ K

ρ K L

ρ K L

ρ K L

ρ K M

После K-скачка с увеличением длины волны также происходит возрастание по степенному закону, но постоянные C и S имеют другие значения.

При дальнейшем уменьшении энергии кванта, т.е. при увеличе нии длины волны, будут последовательно выключаться из поглощения LI , LII , LIII , MI и т.д. подуровни и возникнут LI , LII , LIII ,K- скачки поглощения.

Избрав определенную длину волны, можно определить зависи мостьρ от атомного номера поглощающего элемента.

При малых z энергия связи K-электронов с атомом мала, но она растет п- ри увеличении z. Наконец, при некотором z она становится больше, нежели энергия кванта при данной длине волны. Коэффициент поглощ ения при этом z резко упадет, т.к. K-оболочка выключится из поглощения. Поэт ому зависи-

мость ρ τ от z будет иметь такие же скачки, как и зависимость ρ τ îò λ , à

в промежутках между скачками она также будет выражаться степенной функцией:

C b λ g z k

Где k 3. Формулы (13) и (15) можно объединить в одну,

C c λ S z k h

§3.Монохроматизация рентгеновского излучения.

Рентгеновская трубка дает немонохроматическое излучени е, в состав которого входят характеристические линии K α I , K α II , K β I , а также тормозной

Лабораторная работа ¹ 62

спектр. Так как в условиях нашей работы дублет Kα I ,II неразрешим, то мы можем считать его одной линией. Монохроматическое излучение можно получить, выделив кристаллом K α I , èëè K β I линию. Схема установки для монохроматизации показана на рис.2.

Источником рентгеновского излучения является рентгенов ская трубка PT. При помощи щели S1 и диафрагмы S2 выделяется узкий пучок рентгеновских лучей, падающий на кристалл K. Специальное гониометрическое устройство обеспечивает возможность поворота кристалла вокруг оси O и установки нужного угла θ . Поворачивая кристалл, мы можем подобрать угол θ таким, чтобы условие Брегга-Вульфа выполнилось. При этом в направлении зеркального отражения будет распространяться отраженный рентгеновский луч. Однако он может и не быть монохроматическим. В самом деле, е сли условие Брегга-Вульфа выполняется для некоторой длины волны λ 1 ïðè n = 1, òî îíî

будет выполняться и для λ 2 1 ïðè n = 2, äëÿ λ 3 1 ïðè n = 3 и т.д. Т.е., в отражен-

ном луче могут присутствовать так называемые высшие порядки отражения. Длины волн этих высших порядков в целое число раз меньше длины волны излучения, которое мы хотим выделить. Высшие порядки будут присутствовать в отраженном луче, разумеется, в том случае, если в пер вичном луче есть излучение с соответствующими длинами волн. Они могут возн икнуть, в частности, за счет сплошного, тормозного спектра.

Вспомним однако, что тормозной спектр имеет коротковолно вуюграницу, положение которой зависит от напряжения. Если мы подадим на трубку такое напряжение, при котором коротковолновая граница будет больше, чем длины волн всех высших порядков, то они будут отсутствовать в отраженном луче. И отраженный луч будет монохроматическим.

Допустим, что мы имеем трубку с медным анодом и хотим выдел ить из

ее излучения линию СuKα длиной волны 1,54A . Второй порядок отражения

Лабораторная работа ¹ 62

имеет длину длину волны 0,77A. Тормозной спектр будет иметь коротковол-

новую границу в точности равную 0,77A при напряжении

U 0 = 12, 4

16,1êâ

Если же напряжение будет несколько меньше, то коротковолн овая граница сдвинется в сторону больших длин волн и второй порядок отражения (и тем более остальные высшие порядки) будут отсутствовать в отраженном луче.

Следовательно, напряжение на трубке с медным анодом не должно превышать 16 кВ.

§4.Регистрация интенсивности рентгеновского излучения.

Для того, чтобы определить коэффициенты поглощения иссле дуемого вещества, необходимо вначале измерить интенсивность первичного пучка I0 , отраженного от кристалла, затем ввести в этот пучок слой и сследуемого вещества и измерить интенсивность пучка I . Измерение интенсивности рентгеновских лучей в данной работе производится при помощи пропорционального счетчика. Счетчик представляет собой металлический цилиндр, по оси которого на изоляторах натянута тонкая металлическая провол ока. На проволочку подается положительный потенциал относительно корпуса ≈ (2кв). Сбоку цилиндра имеется бериллиевое окно, через которое внутрь сче тчика проникает регистрируемое излучение.

Поглощаясь в газе, наполняющем счетчик, квант излучения с оздает, так называемую первичную ионизацию - положительные ионы и сво бодные электроны. Двигаясь под влиянием электрического поля к проволочке, электроны вызывают т.н. лавину (т.е. происходит процесс газового усиления). В результате этого на сопротивлении, включенном последовате льно с проволоч- кой, возникает электрический импульс, который регистриру ется специальной электронной схемой. По истечении некоторого времени все освободившиеся при разряде электроны собираются на проволочке, а положит ельные ионы на корпусе цилиндра. Счетчик приходит в первоначальное сост ояние и готов к новому разряду.

Ясно, что число разрядов, а значит и число импульсов, возникающих на сопротивлении за единицу времени, пропорционально интен сивности регистрируемого излучения, а амплитуда импульсов пропорционал ьна энергии квантов.

Мерой интенсивности рентгеновского излучения может слу жить поэтому скорость счета N′ , т.е. число импульсов счетчика приходящееся на единицу

Лабораторная работа ¹ 62

времени: N′ = n ′ , где T - время измерения, n′ - общее число импульсов, на-

копленных за T .

Однако измерение скорости счета осложняется двумя обсто ятельствами. Во-первых, во время прохождения разряда и последующего во сстановления режима счетчик оказывается выключенным и не может регистрировать поглощенные в это время кванты. Это время τ называется мертвым временем и равно приблизительно 10 μ ñåê . Поэтому в найденную скорость счета необходимо внести поправку.

Если за единицу времени зарегистрировано N′ импульсов, то общее нерабочее время равно τ N ′ . Следовательно, чтобы найти истинную скорость счета

N необходимо наблюдаемое число N′

отнести к рабочему времени счетчика

T − τN ′ .

N′

− τN ′

Полученная нами формула верна только в первом приближени и, т.к. при больших N′ мертвое время в свою очередь начинает изменяться. Обычно требуется, чтобы произведение τ N ′ было меньше 0,1. Отсюда следует, что N′ не должно превышать 10000 имп/сек.

Во-вторых, каждый акт поглощения кванта является случайны м принципиально непредсказуемым событием. Поэтому общее число им пульсовn, накопленных за время T , также является числом случайным, распределенным по некоторому закону около среднего значения n . Теоретическое рассмотрение

показывает, что среднеквадратичное отклонение от среднего значения b n − n g 2 равно корню квадратному из общего числа накопленных импульсов, независимо от того, за какое время они накоплены.

b n − n g 2 = n

Можно показать, что при каждом конкретном измерении с вер оятностью 95% отклонение n − n по абсолютной величине не будет превышать удвоенного среднеквадратичного отклонения. Т.е. определяемая ве личинаn с веро-

Формула (21) показывает, что относительная ошибка измерени я уменьша-

Лабораторная работа ¹ 62

ется с увеличением числа накопленных импульсов, т.е. с увел ичением времени измерения. Если бы рассмотренная нами ошибка, которую н азывают статистической ошибкой, была единственной, то увеличивая время измерения, можно было бы сколько угодно повышать точность измерения. Однак о всегда существуют другие источники ошибок, рассматривать которые зд есь не будем. Поэтому уменьшать статистическую ошибку, увеличивая вре мя измерения, разумно только до тех пор, пока она не станет быть определяющей ошибкой.

В условиях нашей работы можно потребовать, чтобы статисти ческая ошибка не превышала в 95 случаях из 100 %.

Таким образом, время каждого измерения нужно выбирать так им, чтобы накопить около 4 0000 импульсов. При ограничениях, наложенных на ско-

рость счета e N < 10000 èìïñåê j , измерение займет, очевидно, несколько секунд.

При работе с пропорциональным счетчиком следует также им еть в виду, что кроме импульсов, создаваемых рентгеновским излучением, в счетчике могут возникнуть другие импульсы, образующие т.н. фон. Источнико м фона может служить космическое излучение, а также радиоактивные элементы, которые в ничтожных количествах входят в материалы, из которых изго товлен счетчик и окружающие его приборы.

§5.Определение зависимости коэффициента массового поглощения от атомного номера поглотителя и длины волны рентгеновского излучения.

Перед началом работы необходимо ознакомиться с установк ой, на которой она выполняется, пользуясь описанием, выдаваемым студенту на руки.

Первая часть работы состоит в определении ρ для C,O, Al ,Cu и слюды при фиксированной длине волны. Как упоминалось ранее, рассеянием при

λ > 1 A можно пренебречь, что позволяет свести задачу к более простому оп-

Работу начинают с определения ρ для углерода. Т.к. получить тонкую и

Прохождение рентгеновского излучения через вещество образца сопровождается взаимодействием излучения с этим веществом. Известны три вида этого взаимодействия: (Слайд 17)

1. Рассеяние рентгеновского излучения (без изменения и с изменением длины волны);

2. Фотоэлектрический эффект;

3. Образование электрон-позитронных пар (этот эффект имеет место только при энергии квантов больше 1 Мэв).

Рассеяние рентгеновского излучения. Вещество, которое подвергается действию рентгеновского излучения, испускает вторичное излучение, длина волны которого либо равна длине волны падающих лучей (когерентное рассеяние), либо незначительно отличается. В первом случае, переменное электромагнитное поле, создаваемое пучком рентгеновских лучей, вызывает колебательное движение электронов облучаемого вещества, и они становятся источниками когерентного излучения. Ввиду когерентности лучи, рассеиваемые различными атомами, могут интерферировать. Расстояния же между атомными плоскостями в кристаллических веществах сравнимы с длинами волн рентгеновских лучей. Поэтому кристалл служит дифракционной решеткой для таких когерентных рентгеновских лучей.

Эффект Комптона. При комптоновском рассеянии падающий квант упруго соударяется с электронами вещества. В результате часть энергии затрачивается на увеличение кинетической энергии электрона и длина волны излучения увеличивается. Поэтому комптоновское рассеяние некогерентно, и рассеянное излучение не может интерферировать. Поэтому мы не будем на нем останавливаться, тем более, что это рассеяние незначительно для сравнительно мягкого излучения, используемого в структурном и фазовом анализе.

Фотоэффект. Этот процесс имеет место только в случае жесткого первичного излучения. В этом случае, взаимодействуя с атомами вещества, рентгеновские лучи могут выбивать электроны за пределы атома, ионизируя его. При большой кинетической энергии выбитых электронов они сами могут являться источником нехарактеристического рентгеновского излучения. То есть этот вид излучения вносит вклад только в сплошное (белое) излучение.

Суммарное поглощение рентгеновского излучения веществом.

Проходя через вещество, рентгеновские лучи вызывают ионизацию атомов, возбуждение в них флуоресцентного излучения и образование Оже-электронов. Эти процессы ответственны за поглощение рентгеновских лучей. Кроме того, интенсивность лучей, проходящих через вещество в направлении падающего пучка, уменьшается из-за рассеяния его электронами вещества по всем направлениям. Наконец, рентгеновские кванты очень большой энергии (больше 1 МэВ), пролетая около ядер, вызывают появление электронно-позитронных пар. Все это уменьшает интенсивность проходящего пучка тем больше, чем толще слой вещества.


Общий закон, количественно определяющий ослабление любых однородных лучей в поглощающем веществе можно сформулировать следующим образом:

«В равных толщинах одного и того же однородного вещества поглощаются равные доли энергии одного и того же излучения».

Если интенсивность лучей, падающих на вещество, обозначить через I 0 , а их интенсивность после прохождения через пластинку из поглощающего вещества как I, то этот закон можно выразить в следующем виде:

Возьмем тонкий однородный экран, проходя через который монохроматический пучок с сечением, равным единице, теряет энергию dI. Она пропорциональна толщине экрана dx и интенсивности пучка I 0 . Получим, что:

dI = - μ I 0 dx

где: dx – толщина слоя вещества;

Постоянна величина μ предствляет собой натуральный логарифм числа, характеризующего уменьшение интенсивности при прохождении лучей через слой данного вещества единичной толщины:

μ = ln (I 0 /I) (при dх =1).

Называется этот коэффициент μ –линейным коэффициентом поглощения для данного вещества, или линейным коэффициентом ослабления лучей.

Решая это уравнение, получим:

I = I 0 exp (-μ x)

Где х – толщина слоя поглощения.

Коэффициент поглощения можно рассматривать как сумму коэффициентов собственного поглощения τ и коэффициента рассеяния σ.

μ = τ + σ

Удобнее пользоваться массовыми коэффициентами поглощения, т. к. коэффициенты линейного поглощения пропорциональны плотности вещества образца.

μ/ρ = τ/ρ + σ/ρ

В интересующем нас интервале длин волн массовый коэффициент рассеяния много меньше коэффициента собственного поглощения τ/ρ, поэтому приближенно принимают что:

Если известен состав вещества образца, то можно вычислить для него μ/ρ, зная содержание компонентов в весовых (массовых) процентах.

Рассматриваемые коэффициенты поглощения зависят от порядкового номера вещества и от длины волны рентгеновского излучения. Существуют специальные таблицы. Эти данные необходимы, например, для определения глубины проникновения рентгеновского излучения в исследуемое вещество при заданной геометрии съемки рентгенограммы.

Теперь давайте посмотрим, зачем это нужно. На слайде 26 показан спектр поглощения рентгеновского излучения в никеле (зависимость коэффициента поглощения μ/ρ от длины волны рентгеновского излучения). Видно, что при определенных значениях длин волн происходит резкое изменение величины коэффициента поглощения.

В интервале между скачками коэффициент поглощения увеличивается с увеличением длины волны по приближенной зависимости:

где: k – коэффициент пропорциональности, а Z – порядковый номер элемента.

Длины волн, соответствующие скачкам коэффициента поглощения, называются краями полос поглощения. Они имеют тонкую структуру, которую мы не будем рассматривать.

Как уже указывалось, поглощение рентгеновского излучения, в основном, обусловлено выбиванием электронов с внутренних или внешних электронных оболочек атомов. Если энергия излучения больше или равна энергии, необходимой для удаления электрона с данной оболочки, то происходит поглощение, вызванное этим процессом. Если же энергия излучения меньше, то поглощение происходит только за счет более внешних оболочек. Поэтому различают K-, L-, M- и т.д. края полос поглощения.

Коэффициент k в приведенном уравнении приблизительно равен 7х10 -3 для длин волн, меньших К-края полосы поглощения исследуемого вещества. В интервале между K- и L- краями полос поглощения он равен примерно 9х10 -4 . То есть, при переходе через К- край полосы поглощения коэффициента поглощения меняется примерно в 8 раз. Это и вызывает скачок на спектре.

Наличие этих скачков учитывается при выборе излучения для съемки рентгенограмм. Вторичное рентгеновское излучение краев полос поглощения вызывает значительное увеличение фона на рентгенограммах, и поэтому нежелательно. Поэтому для съемки выбирают излучение или с длинй волны, значительно меньшей λ края, или большей λ края. (слайд 28 а и б).

Наличие краев полос поглощения используется и для ослабления β – излучения. Для этого на пути пучка излучения К – серии ставится тонкая пластинка из материала с краем полосы поглощения, лежащим между α и β -линиями используемого излучения. (Слайд 28 г).

Обычно в качестве фильтра может быть использована фольга элемента с порядковым номером на единицу меньше порядкового номера анода.

Но в реальности не все так просто. Например, для съемки рентгенограммы двуокиси титана TiO 2 можно использовать излучение от молибденовой трубки, так как длина волны рентгеновского излучения в этом случае равна 0,709 А, то есть много меньше края полосы поглощения титана (2,50 А). То есть, мы реализуем ситуацию положения (а) на слайде. Однако использование для фазового анализа излучения этой трубки нежелательно. Из-за малой длины волны разрешающая способность и точность определения межплоскостных расстояний будет невысокой. Предпочтение следует отдать излучению с большей длиной волны. Например, - от медной трубки. Длина волны CuK α равна 1,54А, также меньше края полосы поглощения титана. В качестве фильтра ставят никелевую фольгу. Порядковый номер меди 29, а у никеля 28. Для ослабления вторичного титанового излучения поверх никеля помещают еще алюминиевую фольгу. Более мягкое титановое излучение будет поглощаться значительно сильнее, чем более жесткое медное. То есть, процесс выбора длины волны и материала фильтра не очень прост.

2. ИСТОЧНИКИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Основные способы получения рентгеновских лучей для структурных исследований связаны с использованием потока быстро летящих электронов. Ускорители электронов – бетатроны и линейные – используются для получения мощного коротковолнового рентгеновского излучения, применяемого, главным образом, в дефектоскопии.

Но ускорители электронов громоздки, сложны в настройке и используются преимущественно в стационарных установках. Наиболее распространенным источником рентгеновских лучей является рентгеновская трубка.

По принципу получения электронных пучков рентгеновские трубки делятся на трубки с горячим катодом, (свободные электроны возникают в результате термоэлектронной эмиссии (рис. 3)) и трубки с холодным катодом (свободные электроны возникают в результате автоэлектронной эмиссии). Рентгеновские трубки обоих типов могут быть запаянными с постоянным вакуумом и разборными, откачиваемыми вакуумными насосами.

Наиболее распространены запаянные рентгеновские трубки с горячим катодом. Они состоят из стеклянной колбы и двух электродов – катода и анода (рис. 5). В колбе создается высокий вакуум (10-7 – 10-8 мм рт. ст.), обеспечивающий свободное движение электронов от катода к аноду, тепловую, химическую и электрическую изоляцию раскаленного катода.

Катод рентгеновской трубки состоит из нити накала и фокусирующего колпачка. Форма нити и колпачка определяется заданной формой фокусного пятна на аноде трубки – круглой или линейчатой. Нить из вольфрамовой спирали разогревается электрическим током до 2000 – 2200 С; для повышения эмиссионных характеристик нить часто покрывают соединениями тория.

Размеры фокусного пятна определяют оптические свойства рентгеновской трубки. Резкость изображения при просвечивании, а также точность рентгеноструктурного анализа тем выше, чем меньше размеры фокуса. Рентгеновские трубки с малым размером фокуса называются острофокусными.

Анод рентгеновской трубки представляет собой медный цилиндр, в торец которого впрессовано зеркало анода – пластинка из материала, в котором происходит торможение электронов. В рентгеновских трубках для просвечивания зеркало изготовлено из вольфрама, для рентгеноструктурного анализа – из того металла, характеристическое излучение которого будет использовано. Торец анода в рентгеновских трубках для структурного анализа срезан под определенным углом к оси анода (пучку электронов). Это делается с целью получить выходящий из трубки пучок с максимальной интенсивностью.

При ударе электронов о зеркало анода приблизительно 96% их энергии превращается в тепло, поэтому анодный цилиндр охлаждается протекающими водой или маслом.

Анод защищен специальным медным чехлом для задержания отраженных от анода электронов и защиты от неиспользуемых рентгеновских лучей. В этом чехле есть одно или несколько окошек для выхода рентгеновских лучей, в которые вставляются тонкие пластинки из бериллия, который практически не поглощает рентгеновское излучение, генерируемое в трубке.

Предельная мощность рентгеновской трубки P определяется мощностью проходящего через нее электрического тока:

где U – максимальное напряжение, прилагаемое к рентгеновской трубке; I – максимальный ток, идущий через рентгеновскую трубку.

Реальная предельная мощность зависит от площади фокусного пятна (т. е. удельной мощности), материала анода и продолжительности работы трубки. Кратковременные нагрузки могут быть в десятки раз выше длительных нагрузок.

Практически измеряемый ток через рентгеновскую трубку появляется лишь при достижении током накала определенной величины, соответствующей температуре нагрева нити 2000–2100 С (рис. 6 а); повышение тока накала резко увеличивает температуру и количество испускаемых нитью электронов (эмиссионный ток). При постоянном токе накала и при низких напряжениях на анод попадают не все электроны эмиссии, а лишь их часть, тем большая, чем больше анодное напряжение. При определенном напряжении, зависящем от тока накала, все электроны эмиссии попадают на анод (режим насыщения), поэтому дальнейшее увеличение анодного напряжения не увеличивает анодный ток (он равен эмиссионному). Это предельное значение анодного тока называют током насыщения, и он тем выше, чем больше ток накала (рис. 6 б). Рентгеновские трубки работают в режиме насыщения при напряжениях в 3–4 раза выше номинального, т. е. необходимого для установления тока насыщения. Поэтому анодный ток регулируют в широких пределах, незначительно изменяя ток накала.

В обозначениях рентгеновских трубок для структурного анализа вместо анодного напряжения указывается материал зеркала анода, в качестве которого используются Cr, Fe, Co, Ni, Cu, Mo, Ag, W и некоторые другие чистые металлы. (Каждая, естественно, имеет свою длину волны характеристического излучения). Например, трубка 0,7БСВ-2-Со имеет длительную мощность 0,7 кВт, безопасна, предназначена для структурного анализа, водяное охлаждение, тип 2, кобальтовый анод.

РЕГИСТРАЦИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ.

Для регистрации рентгеновских лучей применяются фотографический, люминесцентный, сцинтилляционный, электрофотографический и ионизационный методы.

Исторически первым, и до недавнего времени наиболее используемым был фотографический метод.

Фотографический метод регистрации рентгеновских лучей широко распространен и в настоящее время. Он обладает высокой чувствительностью и документальностью, но требует использования специальных фотоматериалов и их трудоемкой обработки. Рентгеновские пленки имеют двухсторонний слой эмульсии, содержащий значительно больше бромистого серебра, чем обычные фотоматериалы. Фотоэмульсия состоит из мельчайших (~ 1 мкм) кристалликов AgBr с присадками небольших количеств серы, что создает структурные дефекты. Поэтому возникают центры возбуждения скрытого изображения. При поглощении квантов рентгеновских лучей с энергией ν = ε h в эмульсии, как и при действии видимого света, идут процессы по схеме:

AgBr + h ν → Ag + Br.

Скопление 20-100 атомов Ag образует устойчивый центр скрытого изображения, который способен проявляться под действием фотореагента – проявителя. Кристаллики, содержащие центры скрытого изображения, восстанавливаются до металлического серебра. Кристаллики AgBr, не содержащие таких центров и не восстановленные проявителем, вымываются из эмульсии закрепляющим раствором. В результате на фотопленке остаются только зерна металлического серебра. Число таких зерен и определяет плотность почернения фотоэмульсии, которое пропорционально экспозиции – произведению интенсивности излучения на время облучения.

Оценку плотности почернения на рентгенограммах производят визуально или более точно с помощью микрофотометров, которые позволяют записать и рассчитать кривую распределения плотности почернения.

Люминесцентный метод наблюдения изображения на светящемся экране (рентгеноскопия) обладает очень большой производительностью, не требует затрат на фотоматериалы. Этот метод основан на свечении под действием рентгеновских лучей некоторых веществ и особенно люминофоров – веществ, дающих большой выход видимого излучения (флуоресценцию).

Наилучшим люминофором с желто-зеленым свечением является смесь 50% ZnS+50% CdS. Подобные люминофоры используют для изготовления экранов визуального наблюдения изображений в рентгеновских лучах (экраны для просвечивания в дефектоскопии и медицинской диагностике). Небольшие экраны применяют для настройки рентгеновских камер и юстировки гониометров рентгеновских дифрактометров. Люминофор CaWO4 (с сине-фиолетовым свечением) применяют для усиления фотографического действия рентгеновских лучей. Для этого экран плотно прижимают к эмульсии фотографической пленки, что позволяет резко уменьшить экспозицию при просвечивании (флюорография).

Сцинтилляционный счетчик представляет собой сочетание люминесцентного кристалла (NaI с примесью активатора из талия Tl) и фотоэлектронного умножителя (ФЭУ).

Проникая в сцинтиллятор, квант рентгеновского излучения поглощается люминофором, в результате чего образуется фотоэлектрон. Проходя через вещество кристалла этот электрон ионизирует большое количество атомов. Ионизированные атомы, возвращаясь в стабильное состояние, испускают фотоны ультрафиолетового света. Эти фотоны, попадая на фотокатод ФЭУ, выбивают из него электроны, котрые, ускоряясь в электрическом поле фотоумножителя, попадают на первый эмиттер. Каждый электрон выбивает из материала покрытия эмиттера несколько электронов, и весь процесс повторяется на следующем эмиттере и так далее. Современные ФЭУ состоят из 8 – 15 каскадов, их полное усиление доходит до 10 7 – 10 8 .

На каждый каскад подается напряжение 150-200 вольт. Общее напряжение на ФЭУ 600 – 2000В. На выходе ФЭУ возникает импульс напряжения, пропорциональный энергии регистрируемого кванта. Например, для Кα меди амплитуда этого импульса равна 0,01 В. Поэтому для регистрации таких импульсов используются усилители с усилением порядка тысячи.

Электрофотографический метод (ксерография) сохраняет многие преимущества фотометода, но более экономичен. Принцип его такой же, как у множительных аппаратов. Этот метод пока не нашел широкого применения в практике структурных исследований, но для решения задач дефектоскопии, особенно при микродефектоскопии на основе так называемых рентгеновских микроскопов, он начинает использоваться.

Ионизационный метод позволяет точно измерять интенсивность рентгеновских лучей, но измерение проводится на небольшой площади, определяемой размерами входного окна счетчика и измерительных щелей. Поэтому для измерения пространственного распределения интенсивности рентгеновских лучей необходимо сканирование – перемещение счетчика по всей области углов рассеяния.

Это ограничивает применение метода в дефектоскопии, где он широко используется только для измерения толщины, однако в рентгеноструктурном анализе этот метод практически вытесняет все остальные, несмотря на необходимость использования дорогостоящей электронной аппаратуры.

Ионизационный метод основан на ионизации атомов вещества при взаимодействии с квантами рентгеновских лучей. Если ионизация газа происходит в поле плоского конденсатора, то образовавшиеся ионы движутся к соответствующим электродам, и возникает ионизационный ток. При увеличении напряженности электрического поля на обкладках конденсатора скорость ионов увеличивается, поэтому уменьшается вероятность их нейтрализации при столкновении противоположных ионов, следовательно, возрастает ионизационный ток (рис. 7). При напряжении U > U 1 нейтрализация становится ничтожной, и ионизационный ток достигает насыщения.

При дальнейшем увеличении напряжения до U = U 2 ионизационный ток не увеличивается, возрастает лишь скорость ионов. При U > U 2 скорость ионов становится настолько большой, что происходит ударная ионизация молекул газа. Фотоэлектроны, образовавшиеся при взаимодействии излучения с атомами газа и потерявшие скорость при соударениях, не рекомбинируют, а вновь ускоряются, получая кинетическую энергию, достаточную для ионизации газа и создания новых пар ион – электрон. В результате этих процессов ударная ионизация происходит снова и снова и количество электронов лавинообразно растет. Ток начинает линейно возрастать с увеличением напряжения за счет так называемого газового усиления. Коэффициент усиления при напряжениях до U ≤ U 3 может достигать 10 2 -10 4 (область полной пропорциональности).

В этой области существуют два вида разрядов: несамостоятельный и самостоятельный. В области U 2 - U 3 лавины электронов быстро затухают и разряд прекращается, как только все ионы и электроны достигают катода и анода. Разряд существует только до тех пор, пока в счетчик попадает излучение. Это несамостоятельный разряд.

Дальнейшее повышение напряжения вызывает самостоятельный разряд.

При U > U 3 нарушается линейность газового усиления (область неполной пропорциональности). При U > U 4 возникает лавинный разряд. Лавинообразование идет также под действием фотоэлектронов, образующихся за счет фотоэффекта на катоде. Катод облучается ультрафиолетовым излучением, образующимся при рекомбинации ионов. Разряд мгновенно распространяется по всему объему газа и для его поддержания не требуется новых квантов излучения.

Линейчатый (характеристический) рентгеновский спектр

Первое систематическое исследование линейчатых спектров элементов провел Г. Мозли в 1913 г. Он использовал спектрометр Брэгга вакуумного типа. Из каждого исследуемого элемента приготавливалась мишень рентгеновской трубки. Мозли обнаружил, что все исследуемые элементы дают спектры сходного вида (отсюда и часто используемое название спектров - характеристические спектры). Он разделил рентгеновские спектральные линии каждого элемента на две группы, или серии: на группу со сравнительно короткими длинами волн, /Г-серию, и на группу со сравнительно большими длинами волн, L-серию. Серии отделены одна от другой большим интервалом длин волн. Более тяжелые элементы с атомными номерами больше 66 дают также и другие рентгеновские спектральные серии, обозначаемые как М-, N-, 0-серии, с длинами волн, еще большими, чем у L-серии.

Поглощение рентгеновского излучения

Интенсивность рентгеновского излучения при прохождении через образец ослабляется за счет поглощения и рассеяния. Механизм поглощения рентгеновских лучей отличается от механизма оптического поглощения: поглощение энергии рентгеновского излучения происходит в результате единственного процесса - вырывания электронов внутренних оболочек за пределы атома, т. е. в результате ионизации атома за счет внутренних электронов. Энергия поглощаемого излучения превращается в кинетическую энергию выбитых электронов (фотоэлектронов) и потенциальную энергию возбужденного атома, которая равна энергии связи выбитого электрона.

На рисунке 16 представлен качественный вид спектра поглощения рентгеновского излучения. Рентгеновское излучение наименьшей энергии (наибольшей длины волны) вырывает электроны с внешних оболочек. При возрастании энергии излучения всё меньшая ее часть необходима для выбивания электрона из данной

оболочки. Это сопровождается уменьшением поглощения. Монотонное уменьшение поглощения происходит до тех пор, пока энергия излучения не станет достаточной для того, чтобы вырвать электрон из следующей, более глубокой оболочки. Это вызывает резкое увеличение поглощения, соответствующее краю поглощения. Краем поглощения называется резкий скачок поглощения электромагнитного излучения, вызванный тем, что энергии квантов рентгеновского излучения становится достаточно для перевода электрона в возбужденное состояние. На рисунке 16 показаны скачки поглощения, вызванные выбиванием электронов из оболочек и подоболочек L и М и оболочки К.

Другое явление, вызывающее ослабление интенсивности рентгеновского излучения при прохождении через вещество, - рассеяние. Рассеяние происходит в результате столкновения рентгеновского фотона (энергия фотона - hu) с электронами атома (с энергией Е эл).

Если энергия рентгеновских фотонов меньше энергии связи электронов (hu то фотоны не могут выбить электрон из данной внутренней оболочки. В результате упругого столкновения с закрепленными электронами фотоны лишь изменяют направление (рассеиваются); их энергия и соответственно длина волны остаются прежними. Рассеяние, при котором длина волны не изменяется, называется когерентным (томеоновским) раесеянием. Оно составляет основу рентгеновской дифракции, используемой в структурном анализе.

Если же энергия рентгеновских фотонов больше энергии связи электронов (hu > Е эл), то фотоны вырывают электрон из соответствующей внутренней оболочки, но при столкновении с электронами передают им часть своей энергии. В результате рассеивающиеся фотоны обладают меньшей энергией и большей длиной волны. Это рассеяние с изменением длины волны называется некогерентным (комптоновским) раеееянием. Поскольку выбивание электрона является первым условием возникновения всех рентгеновских и электронных спектров, именно некогерентиое рассеяние сопровождает их возникновение. Но так как в атоме имеются одновременно более и менее сильно связанные электроны (более глубокие и менее глубокие внутренние оболочки), то в спектре рассеянного излучения можно наблюдать две линии - с неизмененной и с измененной (увеличенной) длиной волны.

Интенсивность рассеяния увеличивается с атомным номером: чем больше в атоме электронов, тем большую интенсивность рассеяния они вызывают, т. е. рентгеновские лучи слабо рассеиваются легкими атомами и сильно - тяжелыми.

Количественная оценка уменьшения интенсивности рентгеновских лучей при прохождении через вещество производится с помощью коэффициента ослабления д, представляющего собой сумму коэффициента чистого (фотоэлектрического) поглощения т и коэффициента рассеяния а. Часто коэффициент ослабления называют коэффициентом поглощения, имея в виду его двухчленное содержание. При длинах волн более 0,5 А и для элементов с Z > 26 ослабление практически полностью обусловливается поглощением

Линейный коэффициент ослабления (поглощения) /ц, измеряемый в см -1 , может быть определен из закона Вера:

устанавливающего экспоненциальную зависимость уменьшения интенсивности любого излучения от толщины образца. Линейный коэффициент поглощения вычисляется логарифмированием (29):

Линейный коэффициент ослабления (30) используется для оценки прозрачности или непрозрачности образца при данной толщине образца и для данного излучения. Поскольку коэффициент д/ зависит от состояния вещества (твердого, жидкого, газообразного), он не является константой, характеризующей поглощение данного элемента. Его величина зависит от атомного номера поглощающего вещества и длины волны рентгеновского излучения.

Чаще пользуются массовым коэффициентом ослабления (поглощения)

где р - плотность (г/см 3), т. е. д имеет размерность см 2 /г. Введение массовых коэффициентов оказывается удобным, так как их характерной особенностью является независимость от агрегатного состояния вещества. Так, д имеет одинаковое значение для воды, водяного пара и льда. Кроме того, отпадает необходимость в определении коэффициентов ослабления для всего множества различных веществ. Это возможно потому, что поглощение и рассеяние осуществляются в основном внутренними электронами атомов, состояние которых не зависит от того, в состав какого вещества входит атом того или иного элемента. По этой причине в справочных таблицах обычно приводятся значения массовых коэффициентов ослабления ц для атомов различных элементов и для различных длин волн рентгеновских лучей. Например, массовый коэффициент поглощения алюминия в излучении SrК а (Л = 0, 876 А) обозначается как До,876 или /ЩгК а. Таблицы значений д для важнейших К а1 ~, Kg-, L a - и других линий излучения элементов опубликованы.

Страница 1

Лекция 10

Взаимодействие рентгеновского излучения с твердым телом (фотоэффект, эффект Комптона). Сечение фотоэффекта и его связь с линейным коэффициентом поглощения рентгеновского излучения. Расчет массового коэффициента поглощения для полиатомных образцов.

Полезное соотношение при переходе от энергии фотона к длине волны

Произведение энергии на длину волны = hc = 12,4 кэВÅ

(10.1)
При прохождении пучка фотонов через твердое тело возможны следующие процессы, приводящие к ослаблению интенсивности пучка:


  • рождение фотоэлектронов в результате фотоэффекта;

  • комптоновское рассеяние;

  • образование электрон-позитронных пар.
Последний из этих процессов, заключающийся в поглощении фотона с образованием электрон-позитронной пары, может происходить только в случае если энергия фотона  2m e c 2 = 1,02 МэВ. В методах элементного и структурного анализа фотоны с такими энергиями не используются, поэтому данный процесс рассматриваться не будет.

Комптоновское рассеяние приводит в принципе не к поглощению фотона, а к изменению направления его движения (рассеянию на угол ) с одновременным увеличением его длины волны на величину  = (h /m e c )(1 – cos), где h /m e c = 0,0243 Å – комптоновская длина волны электрона . Энергии фотонов, используемых в методах анализа, обычно не превышают 10 кэВ, что соответствует длине волны  = 1,24 Å. Поэтому, даже для максимального угла рассеяния  = 90 о относительное изменение длины волны в результате комптоновского рассеяния /  210 -2 . Кроме того, при указанных энергиях, вероятность процесса комптоновского рассеяния значительно ниже вероятности рождения фотоэлектрона. Таким образом, преобладающий вклад в ослабление пучка фотонов (рентгеновских квантов) вносит фотоэффект.

Напомним, что при фотоэффекте рентгеновский квант с энергией ħ  передает всю энергию атомному электрону, в результате чего последний вылетает из атома с энергией

Е е = ħ  – Е св,

(10.2)
где Е св – энергия связи электрона в атоме.

Для осуществления фотоэффекта необходимо условие ħ   Е св, поэтому при фиксированной энергии кванта фотоэффект может иметь место на одних оболочках (подоболочках) и отсутствовать на других.

В соответствие с выражением (10.2), при облучении образца рентгеновскими квантами фиксированной энергии (монохроматическим рентгеновским излучением) из образца будут вылетать фотоэлектроны с различными энергиями, отвечающие различным энергиям связи. Измерив Е е и зная ħ , можно определить Е св и установить, каким атомом испущен фотоэлектрон. Эта возможность лежит в основе метода анализа, называемого рентгеновской фотоэлектронной спектроскопией.

Квантовомеханический расчет дает следующее выражение для зависимости сечения фотоэффекта на оболочке (подоболочке) с энергией связи Е св

Так как e 2 ħ /m e c = 5,5610 -2 кэВÅ 2 , то, объединив все константы, получим следующее выражение



Å 2 , если ħ  в кэВ.

(10.3)
Если ввести ħ  0 = hc / 0 = Е св, то получим зависимость сечения фотоэффекта от длины волны рентгеновского излучения в виде

0 называется длиной волны края поглощения (если К -оболочка, то К -край поглощения, если L 1 , то L 1 -край поглощения).

И
з приведенных выражений следует, что при ħ   Е св (   0) сечение фотоэффекта стремится к бесконечности. В действительности, наблюдается резкий рост величины  ph до некоторой величины, после чего сечение фотоэффекта на данной оболочке (подоболочке) становится равным нулю (ħ   Е св). При этом, естественно, сечение фотоэффекта на оболочке с меньшей энергией связи не равно нулю. На рис. 10.1а приведена зависимость сечения фотоэффекта от энергии квантов, а на рис. 10.1б – от длины волны вблизи края поглощения.

Полное сечение фотоэффекта в атоме  ph складывается из сечений фотоэффекта на каждой из s оболочек/подоболочек , которые зависят от ћ  и Е св данной оболочки/подоболочки.

Если сечение фотоэффекта рентгеновского кванта с энергией ћ  на оболочке/подоболочке в моноатомном образце с атомной концентрацией n 0 равно , тогда средняя длина свободного пробега кванта до его поглощения с выходом фотоэлектрона с s оболочки/подоболочки

, (10.5)

где n s – число электронов на s оболочке/подоболочке.

Пусть внутри образца интенсивность потока рентгеновских квантов равна I перед входом в слой толщиной dx , тогда доля поглощенного пучка за счет фотоэффекта в этом слое есть

,

где  s = n 0 n s .

Из этого дифференциального уравнения следует, что интенсивность потока рентгеновских квантов после прохождения образца толщиной l связана с интенсивность потока на входе в образец I 0 следующим соотношением:


,



где
коэффициент линейного поглощения . Единица измерения  – см -1 .

Иногда используется понятие длина ослабления – расстояние вдоль нормали к поверхности образца, на котором интенсивность рентгеновского излучения спадает в е раз. Длина ослабления обычно измеряется в мкм.

Существующие в настоящее время модели расчета , особенно при энергии кванта ћ  близкой к Е св, недостаточно хорошо согласуются с экспериментальными данными, поэтому на практике предпочитают пользоваться экспериментально определенными значениями коэффициента линейного поглощения рентгеновских квантов различных энергий в моноатомных материалах, которые определяются по изменению интенсивности потока рентгеновских квантов после прохождения образца известной толщины.

В справочниках обычно приводятся значения массового коэффициента поглощения / , где  – плотность поглотителя, единица измерения / – см 2 /г. Использование массового коэффициента поглощения обусловлено во-первых тем, что для определения линейного коэффициента поглощения необходимо измерять с большой точностью толщину тонкого (порядка микрона) поглотителя, для определения же массового коэффициента поглощения достаточно взвесить образец и определить площадь, облучаемую рентгеновским излучением на поглотителе, что можно сделать с существенно большей точностью. При известной плотности поглотителя  очевидно, что  = (/).

Во-вторых, использование массового коэффициента поглощения позволяет рассчитать / для соединения, состоящего из различных элементов по известным значениям (/) i каждого из элементов, входящего в состав соединения. Делается это следующим образом.

Пусть
– полное сечение (по всем оболочкам и подоболочкам) фотоэффекта на атоме i -го компонента соединения. Тогда линейный коэффициент поглощения в соединении может быть записан как

,

где n i и M i – атомная концентрация и атомная масса i -го компонента в соединении, n 0 i – атомная концентрация моноэлементного образца, состоящего только из i -го компонента, m 0 – атомная единица массы (1,6610 -24 г). Произведение в круглых скобках равно линейному коэффициенту поглощения i - го компонента; произведение, стоящее в знаменателе, представляет собой плотность i -го компонента, поэтому линейный коэффициент поглощения может быть представлен в виде

.

Плотность соединения можно представить в виде
и массовый коэффициент поглощения записать как

,

где  – атомная плотность соединения.

Если стехиометрический состав соединения известен, то известны и относительные концентрации каждого i -го компонента С i . Так как С i = n i /n , то окончательно, массовый коэффициент поглощения соединения имеет вид:


.



Иногда массовый коэффициент поглощения записывают через весовые доли Р i i -го компонента соединения (
).

На рис. 10.2 в качестве примера приведена зависимость массового коэффициента поглощения в никеле от длины волны рентгеновского излучения. Сильная зависимость / следует из энергетической зависимости сечения фотоэффекта от энергии рентгеновского кванта (длины волны). При длине волны меньше К –края поглощения, определяемой как h с /(соответственно при ћ  > ), кванты в основном поглощаются на К оболочке (
). При длине волны большей К –края поглощения этот процесс происходит на L - подоболочках, где для массового коэффициента поглощения также наблюдаются соответственно края L 1 , L 2 и L 3 – поглощения.

страница 1