Максимальный срок службы электродвигателей 380 в. Продлить срок службы электродвигателя

Что нужно для правильного выбора электродвигателя? Его основные электрические характеристики – это:

  • номинальное напряжение;
  • номинальная мощность;
  • скорость вращения вала.

Но двигатели могут работать по-разному. Самый легкий для электромотора режим работы описывается выражением «запустил и забыл». В момент запуска двигатель потребляет ток, в несколько раз больший номинального. Затем ток не изменяется во времени, механическая нагрузка на валу стабильна. При этом обмотки и магнитопроводы нагреваются до рабочей температуры, которая также остается постоянной.

Но двигатели приводят во вращение механизмы различного назначения. Некоторые из них требуют частых запусков и остановок, изменений направления вращения . Наглядный пример – работа электродвигателей в составе грузоподъемных механизмов: кранов, лебедок, тельферов. Оператор не даст отдохнуть электромотору, а будет манипулировать им столько, сколько потребуется для выполнения работы по перемещению груза. То же происходит с электродвигателями металлообрабатывающих станков: при установке детали, подгонке ее положения и в процессе обработки требуется неоднократные запуски и остановки станка и изменения направления вращения.

Нагрузка на валу также не всегда остается постоянной. В технологических процессах нередки случаи работы электродвигателей с резкопеременной загрузкой. Есть продукт – двигатель загружен, закончился – работает в холостую.

Все это приводит к изменению во времени электрических характеристик электродвигателей: тока и мощности. Но главное – изменяется характер нагрева обмоток и магнитопроводов. Потери на нагрев обмоток называются мощностью потерь в меди , а железа магнитопроводов – мощностью потерь в стали . Первые происходят за счет выделения тепла на активном сопротивлении обмотки, вторые – нагрева вихревыми токами, возникающими под действием магнитного поля. Для снижения потерь от вихревых токов магнитопроводы изготавливают из пакета тонких пластин. Их изолируют друг от друга, покрывая лаком. Но полностью избавиться от вихревых токов невозможно.

Так как при запуске двигатель потребляет повышенный ток, то и мощность, рассеиваемая в виде потерь в стали и меди, в момент пуска возрастает. Если после запуска мотор продолжает работу с постоянной нагрузкой, то пусковой нагрев не успевает оказать существенного влияния на его температуру. Если же запуски происходят постоянно, то установившаяся температура становится больше той, что была бы в случае продолжительной работы.

Перегрев электродвигателя снижает срок службы изоляции обмоток и стальных листов магнитопровода. При изготовлении ее рассчитывают на определенную температуру, а при ее превышении изоляция быстрее теряет свои характеристики.

Другим фактором, влияющим на срок службы электродвигателя, является механические воздействия на его детали . На проводник с током в магнитном поле действует сила, стремящаяся его переместить, сдвинуть с места. Прохождение пускового тока через обмотки приводит к увеличению на них механических нагрузок. Усилие передается на элементы, фиксирующие обмотки в пазах статора и ротора, расшатывает их.

Механические усилия испытывают и другие элементы конструкции электродвигателя: вал ротора, места крепления магнитопроводов, подшипники.

Почему нельзя учесть все эти факторы и изготавливать все электродвигатели способными им противостоять? Все дело в стоимости. Для ровной и продолжительной работы электродвигатель можно изготовить дешевле. А для эксплуатации в тяжелых условиях потребуются дополнительные усиления конструкции, изоляции, что вызовет удорожание двигателя в целом.

Поэтому, помимо основных электрических характеристик, электродвигателям устанавливают типовые режимы работы. Обозначаются они сокращениями от S1 до S10, и для каждого из них есть свое описание.

Рассмотрим основные особенности каждого из них.

S1 — продолжительный режим

Самый легкий и простой режим работы. Электродвигатель, будучи включенным, работает продолжительное время с неизменной нагрузкой. Он разогревается до рабочей температуры, после чего параметры работы не изменяются.

S2 — кратковременный режим

Электродвигатель включается на непродолжительное время и постоянную нагрузку. Времени работы недостаточно для того, чтобы был достигнут номинальный тепловой режим, а времени паузы после нее хватает, чтобы двигатель остыл практически до температуры окружающей среды.

В обозначение режима после S2 добавляется числовое значение продолжительности нагрузки в минутах.

S3 — повторно-кратковременный периодический режим

Последовательность режимов S2, повторяющихся с определенной частотой. При этом двигатель работает с неизменной нагрузкой, время покоя сменяется временем работы. То пуска не влияет на установившуюся температуру.

После обозначения S3 в маркировке указывается коэффициент циклической продолжительности включения (К=∆tр/Т) в процентах.

S4 — режим S3 с пусками

В этом режиме продолжительность работы становится соизмеримой с продолжительностью пуска. В результате цикл работы выглядит так: «пуск-работа-остановка». Он циклически повторяется.

Параметрами режима являются:

  • коэффициент К=∆tр/Т;
  • момент инерции двигателя (Jд), в кг∙м 2
  • момент инерции нагрузки (Jн), в кг∙м 2

Их значения указываются после знака S4.

S5 — режим S3 с электрическим торможением

По сравнению с предыдущим в цикл работы добавляется электрическое торможение, физический смысл которого – преобразование механической энергии вращения вала двигателя обратно в электрическую. При этом происходит отбор энергии от вала, и он быстрее останавливается.

Виды электрического торможения:

  • реверсивное (запуск вращающегося электродвигателя в обратную сторону);
  • реостатное (отключенная от сети обмотка статора подключается к тормозным резисторам);
  • рекуперативное (энергия вращающегося мотора заряжает аккумуляторы или отдается в сеть);
  • динамическое (отключенная от сети переменного тока отмотка статора подключается к источнику постоянного тока);
  • комбинации способов между собой.

После обозначения S5 указываются параметры, аналогичные режиму S4.

S6 — непрерывный периодический режим с кратковременной нагрузкой

Электродвигатель постоянно вращается, но циклически чередуется холостой ход и работа под нагрузкой.

Режим характеризуется коэффициентом К=∆tр/Т.

S7 — режим S6 с электрическим торможением

К режиму S6 добавляется торможение. Параметры те же, что и у S4.

S8 — режим S6 с взаимозависимыми изменениями скорости вращения и нагрузки

Как видно из названия, в этом режиме циклически изменяются нагрузка двигателя и частота его вращения. Причем эти два параметра связаны между собой. Измерение частоты вращения производится, например, путем изменения числа пар полюсов для асинхронных электродвигателей с короткозамкнутым ротором.

ВВЕДЕНИЕ

Работа электрика по обслуживанию электрооборудования сводится к поддержанию работоспособного и безопасного состояния электрических машин, пускозащитных аппаратов, устройств освещения, сигнализации и автоматики, что все и называется электрооборудованием, а также проводов, кабе­лей, разъемов, зажимов, электромонтажных изделий и т. д.

В состав устройств могут входить различные элементы, например, резисторы, конденсаторы, полупроводниковые при­боры. Электрик должен быть знаком со всеми этими элемен­тами, аппаратами и устройствами, но при работе он встречает много вопросов и затруднений, особенно в молодом возрасте, когда мало опыта. Полезно все эти вопросы, и затруднения не спеша проанализировать с книгой, но таких книг пока недоста­точно.

Целью данной работы является знакомство с электрооборудованием и электродвигателями, составляющими часть элек­троустановок (их устройством), назначением, а также мерами безопасности, безотказности, увели­чения срока службы. В этом смысле имеет большое значение знание всех отказов при работе в различных частях электроустановки, по­исков и методов устранения отказов, что подробно представ­лено ниже.

Практически во всех областях деятельности современ­ного общества применяется электрическая энергия.

Энергия - общая количественная мера различных форм движения материи. Для любого вида энергии мож­но назвать материальный объект, который является ее носителем. Так, механической энергией обладают вода, ветер, заведенная пружина; тепловой - нагретый газ, пар, горячая вода. Носителем электрической энергии является особая форма материи - электромагнитное поле.

Электрическая энергия получается путем преобра­зования других видов энергии (механической, тепловой, химической, ядерной и др.) и обладает ценными свой­ствами: относительно несложно, с малыми потерями передается на большие расстояния, легко дробится и пре­образуется в нужный вид энергии (механическую, тепло­вую, световую, химическую и др.).

Наибольшая часть электроэнергии для нужд народного хозяйства вырабатывается на тепловых электростанциях (ТЭС). Здесь химическая энергия органического топлива (угля, мазута, торфа, газа) при его сжигании в паровых котлах превращается в тепловую энергию нагретого водяного пара. Пар под высоким давлением поступает в паровую турбину, где его энергия преобразуется в механическую. Турбины приводят в действие электриче­ские генераторы, преобразующие механическую энергию в электрическую.

Следует отметить, что электродвигатели являются основным источником и потребителями электроэнергии. Учитывая быстрое истощение запасов органического топлива и неблагоприятное воздействие ТЭС на окружающую среду, существует необходимость в экономических разработках электропривода.

Электропривод-это совокупность устройств, приводящих в движение производственные машины и установки при помощи электрических двигателей.

Электропривод состоит из одного или нескольких двигателей, передаточного механизма, необходимого для передачи движения от двигателя к рабочей машине (зубчатого редуктора, ременной передачи и т. п.), и устрой­ства управления, служащего для пуска, остановки и регу­лирования привода.

В большинстве случаев работа электроприводов автоматизируется, начиная с относительно простых операций дистанционного пуска и остановки и кончая выполнением функций регулирования и управления слож­ными взаимосвязанными комплексами различных произ­водственных механизмов.

Автоматическое управление электроприводами, составляющее основу автоматизи­рованного производства, дает возможность увеличить производительность силовой установки.

В соответствии с Основными направлениями эконо­мического и социального развития РБ на 2006- 2010 годы и на период до 2016 года выработка элект­роэнергии в 1990 г. Должна составить 1910-2000 млрд кВт ч.

Для ускорения научно-технического прогресса боль­шое значение имеет автоматизация производственных процессов, осуществляемая на базе электротехники и электроники. К 2007 г. предусматривается резко повысить уровень автоматизации производства (в сред­нем в 2 раза). В промышленности намечено ввести 5,1 тыс. автоматизированных систем управления технологическими процессами.

Предполагается создание и освоение новых поколений электронных вычислительных машин (ЭВМ) всех классов от супер-ЭВМ до персональных для школьного обучения. Применение микропроцессоров и микроЭВМ позволяет создавать гибкие автоматизи­рованные системы управления технологическими процес­сами, электроприводом и электродвигателями, что дает возможность обеспечивать оптимальное выполнение производ­ственных программ. Прокопчик

Игорь Леонидович г. Осиповичи ОЗАА

2. Эксплуатация электродвигателей.

2.1 Назначение электродвигателей.

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту.

Электрические машины преобразуют механическую энергию в электрическую, и наоборот. Машина, преобразующая механическую энергию в электрическую, называются генератором. Преобразование электрической энергии в механическую - осуществляется двигателями.

Любая электрическая машина может быть использована как в качестве генератора, так и в качестве электродвигателя. Это свойство электрической машины изменять направление преобразуемой ею энергии называется обратимостью машины. Электрическая машина может быть также использована для преобразования электрической энергии одного рода тока (частоты, числа фаз переменного тока, напряжения постоянного тока) в энергию другого рода тока. Такие электрические машины называются преобразователями.

В работе будут описаны принципы и характеристики работы двигателей электропривода, согласно заданной темы и выполненных работ по изучению основ электропривода.

В зависимости от рода тока электроустановки, в которой должна работать электрическая машина, они делятся на машины постоянного и переменного тока.

Машины переменного тока могут быть как однофазными, так и много фазными. Наиболее широкое применение нашли трехфазные синхронные и асинхронные машины, а также коллекторные машины переменного тока, которые допускают экономичное регулирование частоты вращения в широких пределах

В настоящее время асинхронные двигатели являются наиболее распространенными электрическими машинами. Они потребляют около 50% электроэнергии, вырабатываемой электростанциями страны. Такое широкое распространение асинхронные электродвигатели получили из-за своей конструктивной простоты, низкой стоимости, высокой эксплуатационной надежности. Они имеют относительно высокий КПД: при мощностях более 1кВт кпд=0,7:0,95 и только в микродвигателях он снижается до 0,2-0,65.

2.1.1 УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ

Асинхронные двигателя

Устройство асинхронного двигателя. Двига­тель состоит из двух основных частей, разделенных воз­душным зазором: неподвижного статора 6 и вращающего­ся ротора 3. Каждая из этих частей имеет сердечник и обмотку.

При этом обмотка 2 статора включается в сеть и является как бы первичной, а обмотка 4 ротора - вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками (подобно трансформатору).

Существуют два основных типа асинхронных двигате­лей: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Последние, иногда называют двигате­лями с контактными кольцами. Оба типа двигателей имеют одинаковую конструкцию статора и различаются конструк­цией ротора.

Статор асинхронного двигателя состоит из корпуса, сердечника и обмотки. Корпус статора служит для соединения всех частей двигателя в единую конструкцию. В небольших двигателях в корпус устанавливают обмотку.

При этом обмотка 2 статора включается в сеть и является как бы первичной, а обмотка 4 ротора - вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками (подобно трансформатору).

Существуют два основных типа асинхронных двигате­лей: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Последние - иногда называют двигате­лями с контактными кольцами. Оба типа двигателей имеют одинаковую конструкцию статора и различаются конструк­цией ротора.

Статор асинхронного двигателя состоит из корпуса, сердечника и обмотки. Корпус и статор служит для соединения всех частей двигателя в единую конструкцию. В небольших двигателях корпус

отливают из алюминиевого сплава, стали или чугуна, а в крупных машинах делают сварным. В корпус статора за­прессован сердечник 2, который с целью уменьшения по-терь от вихревых токов собирается из изолированных друг от друга лаком листов электрической стали (рис. 8.7,6). В пазы сердечника уложены проводники обмотки статора, которая выполняется из медного провода. Основным элементом обмотки является секция, которая может иметь" один или несколько витков.

Активные стороны секций укладывают в пазы сердечника статора, например сторону / укладывают в первый паз, а сторону 4 секции - в четвертый паз. Секции соединяют между собой в катушки, из которых состоят обмотки каждой фазы. Начала С1, С2, С3 и концы С4, С5, С6 фазных обмоток присоединяют к зажимам коробки выводов (рис. 8.9, а). Для упрощения переключения схем У и д зажимы обмотки статора располагают в порядке, указан­ном на рис. 8.9, а.

Ротор асинхронного двигателя состоит из сердечника 3 обмотки 4 и вала 5. Вал ротора устанавливается в подшипниках, запрессованных в под­шипниковых щитах 7, прикрепленных болтами к корпусу статора, и служит для передачи вращающего момента производственному механизму. Сердечник ротора имеет цилиндрическую форму и собирается из листов электро­технической стали.

В двигателях с короткозамкнутым ротором обмотка ротора состоит из ряда алюминиевых стержней (располагаемых в пазах сердечника ротора), замкнутых по торцам кольцами. В этих двигателях мощностью до 400 кВт обмотку ротора выполняют заливкой его пазов под давлением расплавленным алюминием.

Асинхронные двигатели - наиболее распространенный вид электрических машин, потребляющих в настоящее время около 40% всей вырабатываемой электроэнергии. Их установленная мощность постоянно возрастает. Асинхронный двигатели широко применяются в приводах металлообрабатывающих, деревообрабатывающих и других видов станков, кузнечно-прессовых, ткацких, швейных, грузоподъемных, землеройных машин, вентиляторов, насосов, компрессоров, центрифуг, в лифтах, в ручном электроинструменте, в бытовых приборах и т.д. Практически нет отрасли техники и быта, где не использовались бы асинхронные двигатели.

Потребности народного хозяйства удовлетворяются главным образом двигателями основного исполнения единых серий общего назначения, т.е. применяемых для привода механизмов, не предъявляющих особых требований к пусковым характеристикам, скольжению, энергетическим показателям, шуму и т.п. Вместе с тем в единых сериях предусматривают также электрические и конструктивные модификации двигателей, модификации для разных условий окружающей среды, предназначенные для удовлетворения дополнительных специфических требований отдельных видов приводов и условий их эксплуатации. Модификации создаются на базе основного исполнения серий с максимально возможным использованием узлов и деталей этого исполнения.

В некоторых приводах возникают требования, которые не могут быть удовлетворены двигателями единых серий. Для таких приводов созданы специализированные двигатели, например электробуровые, краново-металлургические и др.

ЭНЕРГОСБЕРЕЖЕНИЕ Ведущие фирмы-производители выпускают энергосберегающие стандартные асинхронные двигатели мощностью 15-30 кВт и более. В этих двигателях потери электроэнергии снижены не менее чем на 10 % по сравнению с ранее производимыми двигателями с "нормальным" КПД (h). При этом КПД энергосберегающего двигателя можно определить

как hэ = h / , (1) где е - относительное снижение суммарных потерь в двигателе.

Очевидно, производство энергосберегающих электродвигателей связано с дополнительными затратами, которые можно оценить с помощью коэффициента удорожания

Ку = 1 + (1 - h) е2.100 (2)

Результаты расчетов показывают, что дополнительные затраты, связанные с приобретением энергосберегающих электродвигателей, окупаются за счет экономии электроэнергии за 2-3 года в зависимости от мощности двигателя. При этом срок окупаемости более мощных двигателей меньше, так как эти двигатели имеют большую годовую наработку и более высокий коэффициент загрузки.

В ряде стран вопросы энергосбережения в стандартных асинхронных двигателях связывают не столько со снижением эксплуатационных затрат, сколько с экологическими проблемами, обусловленными производством электроэнергии. В Российской Федерации Владимирский электромоторный завод начиная с 1998 г. выпускает энергосберегающие двигатели 5А280 и с 1999 г. 5А315 мощностью от 110 до 200 кВт, с 200 г.энергосберегающие двигатели 5А355 мощностью 315 кВт, а с 2003 готовиться к выпуску асинхронных двигателей серии 6А.

ПОВЫШЕНИЕ РЕСУРСА. СНИЖЕНИЕ УРОВНЯ ШУМА .

С энергосбережением - уменьшением потерь в асинхронном двигателе - неразрывно связано повышение его ресурса вследствие снижения температуры его обмоток. При применении системы изоляции класса нагревостойкости F (qб = 100°С и qб - q = 20°С, где qб и q - превышение температуры обмоток над температурой окружающей среды, соответствующее базовому ресурсу и фактическое) теоретический ресурс системы изоляции обмотки увеличивается в 4 раза согласно известному соотношениюТсл = Тсл.б ехр [-0,1 ln2 (qб - q)] , где

Тсл и Тсл.б - средний и базовый ресурсы системы изоляции обмоток, причем Тсл.б = 20.103 ч. В действительности ресурс обмотки определяется не только термодеструкцией, но и другими факторами (коммутационным перенапряжением, механическими усилиями, влажностью и др.), поэтому он увеличивается не так значительно, но при этом не менее, чем в 2 раза.

Руководствуясь этими соображениями, европейские фирмы-производители стандартных асинхронных двигателей придерживаются правила применения систем изоляции класса нагревостойкости F (qб = 100°С) при превышении температуры обмоток, соответствующем базовому для систем изоляции класса нагревостойкости В (qб = 80°С). Снижение температуры обмоток стандартных асинхронных двигателей способом охлаждения ICO141 МЭК 60034-6 позволяет в уменьшить диаметр вентилятора наружного обдува и существенно (до 5 дБ(А)) снизить уровень вентиляционного шума, который в двигателях с частотой вращения 3000 и 1500 мин-1 является определяющим.

УНИВЕРСАЛЬНОСТЬ

ПИТАНИЯ В настоящее время большинство стандартных асинхронных двигателей в России выпускают на напряжение сети 380 В при частоте 50 Гц. Вместе с тем МЭК предусматривает к 2003 г. переход на напряжение 400 В (публикация МЭК 60038). При этом необходимо будет обеспечивать длительную работу двигателя при отклонениях напряжения от номинального ±10 % (сейчас это ограничение установлено на уровне ±5 % - публикация МЭК 60031-1). Для обеспечения работы двигателя при пониженном на 10 % напряжении питания потребуются новые подходы при проектировании с целью создания соответствующих температурных запасов. Следует отметить, что и в этом случае для энергосберегающих двигателей с сервис-фактором 1,15 проблем не будет. Все европейские фирмы уже производят стандартные асинхронные двигатели на напряжение 400 В, российские заводы - пока только для поставок на экспорт. Одним из насущных требований европейского рынка является обеспечение возможности работы двигателя при напряжении 400 В и частоте 50 Гц от сети 480 В и 60 Гц при повышенной на 20 % номинальной мощности. Такую возможность также следует предусматривать при проектировании новых машин. ЭЛЕКТРОМАГНИТНАЯ

СОВМЕСТИМОСТЬ Вопросы электромагнитной совместимости (ЭМС) в настоящее время приобретают все большее значение при освоении и сертификации новых серий электродвигателей. ЭМС электродвигателя определяется его способностью в реальных условиях эксплуатации функционировать при воздействии случайных электрических помех и при этом не создавать недопустимых радиопомех другим средствам. Помехи от электродвигателя могут возникать в присоединенных к нему цепях питания, заземления, управления, в окружающем пространстве. ГОСТ Р 50034-92 устанавливает нормы на уровни устойчивости двигателей к отклонениям напряжения и частоты, несимметрии и несинусоидальности питающего трехфазного напряжения, а также методы испытания двигателей на устойчивость к помехам. Вместе с тем при проектировании и производстве асинхронных двигателей для внешнего рынка необходимо руководствоваться публикацией МЭК 1000-2-2, в которой установлены уровни совместимости для низкочастотных распространяющихся по проводам помех и передаче сигналов в низковольтных системах электропитания. При этом измерительное оборудование должно обеспечивать и спектральный анализ на базе компьютерных информационно-измерительных систем. ВОЗМОЖНОСТЬ РАБОТЫ В СИСТЕМАХ РЕГУЛИРУЕМОГО

ЭЛЕКТРОПРИВОДА .

При работе от преобразователя частоты (ПЧ) в ряде случаев необходимо предусматривать защиту двигателя от перенапряжения (если это не предусмотрено в системе) путем усиления витковой и корпусной изоляции. Большинство выпускаемых и применяемых в настоящее время ПЧ, рассчитанных на среднюю мощность до 3000 кВт, по своей структуре являются инверторами. Выходное трехфазное напряжение в этих ПЧ формируется методом широтно-импульсной модуляции, что приводит к воздействию на изоляцию (витковую, межфазовую) электродвигателя напряжения импульсной формы, амплитуда которого значительно превышает амплитуду первой гармоники выходного напряжения. Это приводит к преждевременному старению изоляции и снижению срока службы обмотки и двигателя в целом. Увеличение срока службы асинхронного двигателя общепромышленного применения в составе регулируемого привода может и должно быть обеспечено схемотехническими решениями ПЧ или введением специальных фильтрующих устройств в цепь питания электродвигателя. Разработка ПЧ и регулируемого электродвигателя в едином конструктивном исполнении позволяет оптимизировать систему электропривода не только по массогабаритным показателям и удобству обслуживания, но и с позиций единой системы независимого теплоотвода решить вопрос охлаждения машины на малых частотах вращения. При регулировании частоты вращения, превышающей синхронную, следует применять подшипники соответствующей быстроходности. В связи с этим в публикации МЭК 60034-1 предусмотрено значительное увеличение предельных скоростей, допускаемых для стандартных асинхронных двигателей.

Новые серии асинхронных электродвигателей.

Их характеристики.

К новым сериям выпускаемых асинхронных электродвигателей с короткозамкнутым ротором можно, без сомнений, отнести двигатели семейства 5А и 6А.Эти типы двигателей начали выпускать с конца 90-х годов на российских машиностроительных заводах – Владимирский моторный завод и Ярославский машиностроительный завод ОАО Eldin.

двигатели серии А

Двигатели серии А - унифицированная серия асинхронных трехфазных закрытого обдуваемого исполнения с короткозамкнутым ротором двигателей. Двигатели серии А охватывают диапазон мощностей от 0,06 до 100 кВт, диапазон высоты оси вращения от 50 до 250 мм, частоты вращения 3000, 1500, 1000, 750.

Структура серии предусматривает следующие группы исполнений :

    Модификации по условиям окружающей среды (тропическое, химически стойкое, для сельского хозяйства)

    По точности установочных размеров (высокой точности и повышенной точности),

    С дополнительными устройствами (с фазным ротором, со встроенным электромагнитным тормозом)

    С повышенным пусковым моментом

    С повышенным скольжением

    Многоскоростные

    Узкоспециальные (для судовых механизмов, для привода моноблочных насосов, рудничное исполнение, для привода бессальниковых компрессоров и др.)

Двигатели основного исполнения предназначены для работы от сети переменного тока частоты 50 Гц и изготавливаются на номинальные напряжения, указанные в таблице:

Структура условного обозначения

АИХХХХХХХХХХХ

А - асинхронный; И - унифицированная серия (И - Интерэлектро); Х - привязка мощностей к установочным размерам (Р по ГОСТ, С - по CENELEK); Х - Р - с повышенным пусковым моментом, С - с повышенным скольжением; ХХХ - габарит, мм; Х - установочный размер по длине станины (S, M, L); Х - длина сердечника статора (А или В, отсутствие буквы означает только одну длину сердечника статора - первую); Х - число полюсов: 2, 4, 6, 8; Х - дополнительные буквы для модификаций двигателя (Б - со встроенной температурной защитой; П - с повышенной точностью по установочным размерам; Х2 - химически стойкие; С - сельскохозяйственные); ХХ - климатическое исполнение (У, Т, ХЛ) и категория размещения (1, 2, 3, 4, 5).

Двигатели асинхронные трехфазные закрытого обдуваемого исполнения с короткозамкнутым ротором серии 5А привязаны по мощности к установочным размерам по ГOCT 28330-89.

Электродвигатели серии АИР полностью взаимозаменяемы с соответствующими типами электродвигателей серий 5А Двигатели предназначены для работы в режимах S1-S6 ГОСТ 183-74 (номинальная мощность указана для длительного режима S1) от сети переменного тока 50Гц, напряжением 220, 380, 660В.

Двигатели используются в различных отраслях промышленности и в сельском хозяйстве: для привода станков, насосов, компрессоров, вентиляторов, мельниц, кормоизмельчителей, транспортных механизмов и т.д.

Выпускаются с высотой вращения вала до 315 мм и с высотой вращения вала 90, 100 и 112 мм

Асинхронные двигатели общепромышленного назначения серий 5А основного исполнения и его модификаций соответствует требованиям стандартов, перечисленных в таблице:

НАИМЕНОВАНИЕ

СТАНДАРТ РФ

ПУБЛИКАЦИЯ МЭК

Машины электрические вращающиеся. Номинальные данные и рабочие характеристики

ГОСТ 28173

МЭК 34-1

Машины электрические асинхронные мощностью от 1 до 400 кВт. Двигатели. Общие технические требования

ГОСТ 28330

Машины электрические вращающиеся. Ряды номинальных мощностей, напряжений и частот

ГОСТ 12139

МЭК 38

Машины электрические вращающиеся. Установочно-присоединительные размеры

ГОСТ 18709

МЭК 72

Машины электрические вращающиеся. Классификация степеней защиты, обеспечиваемая оболочками вращающихся машин

ГОСТ 17494

МЭК 34-5

Машины электрические вращающиеся. Методы охлаждения. Обозначения

ГОСТ 20459

МЭК 34-6

Машины электрические вращающиеся. Условные обозначения конструктивных исполнений по способу монтажа

ГОСТ 2479

МЭК 34-7

Машины электрические вращающиеся. Обозначения выводов и направления вращения

ГОСТ 26772

МЭК 34-8

Машины электрические вращающиеся. Допустимые уровни шума

ГОСТ 16372

МЭК 34-9

Машины электрические вращающиеся. Встроенная температурная защита

ГОСТ 27895

МЭК 34-11

Машины электрические вращающиеся. Пусковые характеристики односкоростных трехфазных асинхронных двигателей с короткозамкнутным ротором напряжением до 660В

ГОСТ 28327

МЭК 34-12

Машины электрические вращающиеся. Допустимые вибрации

ГОСТ 20815

МЭК 34-14

Система изоляции. Оценка нагревостойкости и классификация

ГОСТ 8865

МЭК 85

Новые серии электродвигателей асинхронных типа 5A3MB имеют взрывонепроницаемое исполнение. Такие двигатели предназначены для стационарных насосов, компрессоров и других быстроходных механизмов во взрывоопасных зонах, в которых возможно образование взрывоопасных смесей газов, паров с воздухом 1, 2, 3 категории и групп Т1, Т2 ТЗ, Т4 или смесей пыли с воздухом, температура тления или воспламенения которых выше 185 о С.

Электродвигатели асинхронные трехфазные с короткозамкнутым ро- тором серии АТК (аналог АИР) с высотой оси вращения 80,90,100,112 мм

Тип электро- двигателя

Номинальная мощность, кВт

Тип электро- двигателя

Номинальная мощность, кВт

Ном. частота вращения, мин.-1

Крупные асинхронные электродвигатели взрывозащищенного исполнения.

Номенклатура крупных асинхронных взрывозащищенных электродвигателей постоянно обновляется и расширяется, новые серии двигателей отличают более высокие технические характеристики и целый ряд конструктивных решений, направленных на повышение надежности и удобства эксплуатации.

Взамен двигателей ВАО2-450, ВАО2-560 и ВАО2-630 в настоящее время освоено промышленное производство новых серий –ВАО3-710,ВАО3-800, ВАО4-450, ВАО4-560 и ВАО4-630. Отрезки серии ВАО4-450 и ВАО4-560 дополнены исполнениями двигателей с частотой вращения 3000 об/мин.

Электродвигатели серии ВАО4 полностью взаимозаменяемы по установочно-присоединительным размерам с двигателями серии ВАО2. В конструкции электродвигателей серии ВАО4 применены как зарекомендовавшие себя традиционные, так и новые конструктивные решения, дающие ряд преимуществ относительно других производителей аналогичной продукции:

    литая алюминиевая короткозамкнутая обмотка ротора, позволяющая обеспечить оптимальные форму и размеры паза и, как следствие, увеличенный пусковой момент электродвигателей при относительно небольших величинах кратности пусковых токов;

    технология вакуум-нагнетательной пропитки (HPI) обмоток эпоксидным компаундом, являющимся основой изоляции "Монолит-2", высокая надежность которой признана во всем мире;

    изоляционные материалы класса нагревостойкости F, включая изоленты новейших разработок типа "Элмикапор" производства АО ХК "ЭЛИНАР" (Россия), а также ведущих мировых производителей: Von Roll Isola (Швейцария) и Isovolta (Австрия);

    подшипники повышенной надежности производства фирмы SKF (Швеция) в стандартном варианте для двигателей с частотой вращения ротора 3000 об/мин и для любых других типоразмеров серии по заказу потребителя;

    динамическая балансировка ротора и наружного вентилятора, обеспечивающая пониженные значения уровней вибрации, шума и увеличение срока эксплуатации;

    оребренная конструкция корпуса статора повышенной механической жесткости, с обработкой мест посадки пакета статора и подшипниковых щитов с одной установки на специальных расточных станках;

    новая конструкция системы вентиляции. Внутренний вентилятор новой конструкции установлен за зоной расположения лобовых частей обмотки, что значительно повышает надежность;

    конструкция коробки выводов с использованием цельной изоляционной панели;

    устройства контроля температуры подшипников нового типа с возможностью дистанционной передачи сигналов аварийного предупреждения и управления отключением электродвигателя в аварийных режимах;

    пазовые клинья из специального магнитного материала, а также лакировка листов пакета статора, обеспечивающие снижение потерь и увеличение энергетических параметров.

Режим работы двигателя продолжительный S1 от сети переменного частотой 50Гц.

Исполнение по взрывозащите:

1ExdIIBT4(ExdIIBT4).

Вид климатического исполнения:

Конструктивное исполнение по способу монтажа:

Степень защиты:

корпуса и коробки выводов - IP 54; кожуха наружного вентилятора - IP 20.

Способ охлаждения: ICA 0151.

Структура условного обозначения:

Типоразмер

Напря- жение, В

Мощ- ность, кВт

Частота вращения (синхр.), об/мин

КПД, %

Масса, кг

ВАОВ3-710 M4

ВАОВ3-710 L4

ВАОВ3-800 M4

ВАОВ3-800 L4

ВАОВ3-710 LA6

ВАОВ3-710 LB6

ВАОВ3-800 LA6

ВАОВ3-800 LB6

  • Специальность ВАК РФ05.14.02
  • Количество страниц 245

1.1 .Эксплуатационные характеристики изоляции электрических двигателей собственных нужд электростанций и промышленных 13 предприятий.

1.2. Физические процессы старения изоляции электродвигателей

1.3. Анализ методов оценки состояния изоляции электродвигателей

1.4. Эксплуатационные особенности работы асинхронных двигателей электростанций.

1.5 .Постановка задачи исследования.

2. РАЗРАБОТКА УСТАНОВКИ И МЕТОДОВ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ КОМПЛЕКСНОГО 47 ВЛИЯНИЯ РАЗРУШАЮЩИХ ФАКТОРОВ НА СТАРЕНИЕ ИЗОЛЯЦИИ АД 0,4 кВ

2.1. Анализ методов испытаний изоляции асинхронных электродвигателей.

2.2. Разработка установки и методики экспериментального исследования комплексного влияния разрушающих факторов на старе- 52 ние изоляции АД 0,4 кВ.

2.3.Выбор и экспериментальная проверка степени ускорения испытаний изоляции электродвигателей.

2.4. Результаты экспериментальных исследований влияния разрушающих факторов на старение изоляции АД 0,4 кВ.

2.5.Влияние воздуха на пробой изоляции обмоток электродвигателей

3. РАЗРАБОТКА МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ВЛИЯНИЯ РАЗРУШАЮЩИХ ФАКТОРОВ НА ИЗОЛЯЦИЮ 85 ЭЛЕКТРОДВИГАТЕЛЕЙ 0,4 KB.

3.1. Моделирование влияния питающего напряжения на срок службы статорных обмоток электродвигателей.

3.2. Моделирование теплового старения изоляции АД

3.3. Моделирование влияния несимметрии питающего напряжения на срок службы асинхронных двигателей.

3.4. Моделирование старения изоляции АД при повышенной влаж- 105 ности.

3.5. Моделирование зависимости старения изоляции АД от вибра- 106 ции.

4. РАЗРАБОТКА МЕТОДИКИ ЭКСПЛУАТАЦИОННОГО ПРОГНОЗИРОВАНИЯ СРОКОВ СЛУЖБЫ ТРЕХФАЗНЫХ 109 АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ.

4.1. Обобщенная гистограмма распределения пробоев изоляции обмоток электродвигателей.

4.2. Обобщенная модель старения изоляции АД от совокупности разрушающих факторов.

4.3. Восстановление зависимостей сроков службы изоляции электродвигателей от уровня воздействия разрушающих факторов.

4.4. Методика прогнозирования срока службы электродвигателей по эксплуатационным параметрам.

4.5. Экспериментальная проверка методики компьютерного прогнозирования срока службы электродвигателей.

5. РАЗРАБОТКА СРЕДСТВ СНИЖЕНИЯ ИЗНОСА ИЗОЛЯЦИИ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ 0,4 кВ. 129 5.1. Разработка устройства защиты электродвигателей от ускоренного износа в анормальных режимах работы

5.2. Способ защиты электродвигателей от повышенного износа в анормальных режимах.

5.3. Разработка устройства включения электроприемников с пониженными коммутационными токами и уменьшенным износом

5.4. Способ снижения коммутационных токов и уменьшения износа изоляции.

Рекомендованный список диссертаций

  • Повышение эксплуатационной надежности асинхронных электродвигателей в сельскохозяйственном производстве 2002 год, кандидат технических наук Кабдин, Николай Егорович

  • Проблемы эксплуатации диагностики тяговых электродвигателей подвижного состава и пути их решения 1999 год, доктор технических наук Глущенко, Михаил Дмитриевич

  • Метод управляемой сушки асинхронных электродвигателей по энергосберегающей технологии при судоремонте 2004 год, кандидат технических наук Джамо Асмат

  • Система повышения надежности электродвигателей в сельском хозяйстве на основе комплексной диагностики и эффективной технологии восстановления изоляции 2010 год, доктор технических наук Хомутов, Станислав Олегович

  • Совершенствование методов профилактических испытаний высоковольтного электрооборудования предприятий целлюлозно-бумажной промышленности 1984 год, кандидат технических наук Ясинский, Юрий Афанасьевич

Введение диссертации (часть автореферата) на тему «Многофакторное прогнозирование срока службы трехфазных асинхронных электродвигателей 0,4 кВ по эксплуатационным параметрам»

Актуальность темы. Современные промышленно развитые страны наибольшие потоки требуемой механической энергии получают преобразованием ее из электрической посредством электродвигателей преимущественно переменного тока. Только низковольтные двигатели, составляющие 95 % используемых электрических машин, потребляют 40. 50 % вырабатываемой электроэнергии /9/. Электрические двигатели на номинальное напряжение 3; 6 и 10 кВ - наиболее ответственные электрические машины, работающие на электростанциях и промышленных предприятиях. Обычно на каждом предприятии таких машин установлено лишь небольшое количество - единицы или на крупных предприятиях и электростанциях - десятки. Однако от их работы часто зависит весь технологический процесс производства. Как известно, двигатели собственных нужд электростанций обеспечивают привод таких ответственных механизмов, как: питательный насос, дымосос, дутьевой вентилятор, бустерный насос, резервный возбудитель, циркуляционный насос, конденсатный насос 11 ступени, мазутный насос 11 подъема, пожарный насос, насос охлаждения генератора, насос регулирования турбины, конденсатный насос 1 ступени, валоповорот-ное устройство, маслонасос смазки турбины, насос охлаждения ПЭН, маслонасос уплотнения турбины, мазутный насос 1 подъема.

Поэтому от безотказной работы электродвигателей собственных нужд в большой степени зависит надежность работы электрических станций в целом. Поэтому техническое обслуживание, особенно диагностика электрических машин высокого напряжения требует очень большого внимания.

В системах электроснабжения промышленных предприятий электродвигатели часто работают в сложных условиях: загрузка далеко не всегда соответствует номинальной мощности, подведенное напряжение трехфазной сети часто нестабильно, с переменной асимметрией, что обусловлено смешанным подключением однофазных и трехфазных потребителей соизмеримой мощности, во многих случаях работа электродвигателей сопровождается частыми пусками. Многие производственные технологические процессы выполняются в тяжелых условиях, неблагоприятных для электродвигателей, под воздействием разрушающих факторов окружающей среды. Пыль, большая влажность и присутствие агрессивных газов в технологических помещениях; резкие колебания температуры и значительное понижение температуры в зимнее время на открытой территории, высокая температура в котельных и других помещениях делают затруднительной длительную безаварийную эксплуатацию электродвигателей. Все эти факторы отрицательно влияют на эксплуатационную надежность электродвигателей. Поэтому актуально выполнение диагностики разрушения электродвигателей и прогнозирования сроков их службы в зависимости от условий их работы.

Ежегодно из строя выходит 20.30% парка электродвигателей / 26, 84, 85, 99 /. На ряде предприятий в последние годы аварийность достигала 200% (иначе говоря - каждый электродвигатель дважды в год выходил из строя) /103/. Одна из причин такого положения - физический износ энергооборудования, составляющий в настоящее время 55.60%. В результате работа электродвигателей становится все более небезопасной и потенциально аварийной. Для ввода нового электрооборудования требуются постоянно увеличивающие капитальные затраты. В настоящее время в России в связи со сложным экономическим положением такие затраты невозможны. Положение усугубляется тем, что многие электродвигатели выработали или вырабатывают свой нормативный и парковый ресурс.

Надежность электрических машин в значительной степени определяется надежностью их обмоток, которая, в свою очередь, зависит от состояния изоляции. Надежность изоляции электрической машины, а следовательно, срок ее службы зависит от ее способности противостоять длительным воздействиям различных разрушающих факторов. В процессе длительной эксплуатации электрических машин изоляция их обмоток подвергается разнообразным эксплуатационным воздействиям, так как многие технологические линии и отдельные рабочие машины находятся либо на открытом воздухе, либо в неотапливаемых помещениях и поэтому двигатели привода этих машин также подвержены неблагоприятным температурным воздействиям. По данным исследований, приведенных в /66, 84, 85/ - табл. В 1.1, выход из строя электродвигателей в 85.95% случаев связан с повреждением изоляции их обмоток, что обусловливает актуальность проблемы исследования скорости старения и разрушения изоляции обмоток электродвигателей. Основным фактором, приводящим изоляцию в процессе эксплуатации в негодность, является ее температурное (или тепловое) старение.

Кроме того, изоляция в процессе эксплуатации подвергается воздействию механических нагрузок (вибраций, ударов, истирания), влаги и электрического напряжения, постепенно разрушающих ее.

Изоляция обмоток электродвигателей подвергается воздействию коммутационных перенапряжений, которые могут достигать десятикратной и более величины по отношению к номинальному напряжению, что является в большинстве случаев непосредственной причиной межвитковых замыканий.

Таблица В 1.1 Основные причины выхода из строя ЭД и удельный вес каждой из них по данным различных исследователей

Причин ы выхода из строя электродвигателей ис- Несим Пе- Ко- Режи- Не- Несо- Нару- Меха- За- Нор Прежточни- мет- регр рот- мы за- кая. отв. шения в ничес- воде ма- девка рич-ные режи- уз-ка кие замы ка- тормо жен-ного на-пряж исп. АД условиям окр. среды системе охлаждения кие по-вреж- к. дефек- тивн износ рем. измы ния рото- пи- де-ния ты изол нос ра тающей сети яции ИЗ ОЛЯ ции

Процент выхода из Строя двигателей

1 26-44 11,8 * 23,5- 4,1- 1Д- 8,2- 0,5- 4,3- 8 *

38,3 5,4 2,9 11,8 17,6 6,5

2 40-50 8-10 * 20-25 * * 8-10 * * 1015 *

3 40-50 1015 * 20-25 * * 15-25 * ! 2-5 1520 *

4 * * * * * * * 2,3 * * *

5 30 * * * * * * * * * *

6 25-50 1045 * * * * * 20-50 * 5-15 *

7 * 6570 * * * * * 8-12 * 1215 *

8 22-30 * * * * * * * * * *

9 * 5 * * * * * * * * *

10 I* 33 25 * 15 * 18 * * * * *

II 29,4 11,8 * 29,4 * * * * * * *

11 I * * 5 * 0,25 0,25 0,25 4 0,25 * *

II * * 18 * 1 1 1 6 1 * *

12 * * * * * * * * * * 20

13 15,9 9,9 * 29,7 * 22,8 * 7,9 6 * *

14 31 * * * * * * * * * *

Примечание: *- данные отсутствуют

Коммутационные перенапряжения, представляя собой существенно случайные явления, имеют статистический характер. Их вероятностная величина зависит от числа коммутационных операций, которое, в свою очередь, пропорционально времени работы электрической машины. Удельный вес каждого из разрушающих факторов (по данным различных авторов для разных регионов и отраслей) показан в табл. ВЫ.

Для обеспечения нормальной работы асинхронных электродвигателей в установках СН электростанций условия работы электродвигателей, в соответствии с инструкцией по эксплуатации электродвигателей, должны: напряжение на шинах собственных нужд необходимо поддерживать в пределах 100-105 % номинального. При необходимости допускается работа электродвигателей с сохранением номинальной мощности при отклонениях напряжения сети от номинального значения в пределах - 10 % до + 10 %.; при изменении частоты питающей сети в пределах 2,5 % номинального значения допускается работа электродвигателей с номинальной нагрузкой.

Не допускается работа электродвигателя при исчезновении напряжения на одной из фаз:

Вертикальные (удвоенная амплитуда колебаний) и поперечная составляющие вибрации подшипников электродвигателя при всех допустимых режимах работы не должны превышать следующих значений:

Таблица В 1.2

Допустимые вибрации двигателей электростанций

Частота вращения, 3000 1500 1000 750 и менее об/мин.

Допустимая вибрация подшипников:

Тягодутьевой группы 50 100 130 160 механизмов, мкм

Насосной группы ме- 30 60 80 95 ханизмов, мкм

Таким образом, электродвигатели электростанций подвергаются воздействию: температуры окружающей среды; перегрузок, пусковых режимов; отклонений напряжения на зажимах от номинального значения; коммутационных перенапряжений, возникающих в распределительных сетях при пусках и отключениях; толчков, вибраций, ударов со стороны рабочих машин; влажности окружающей среды.

Возникает проблемная ситуация: двигатели в условиях эксплуатации испытывают воздействия разрушающих факторов и в ряде случаев выходят из строя, не выработав ресурса, установленного ГОСТом, а с другой стороны - неизвестно, какой из факторов определяет износ, а соответственно - срок службы конкретного электродвигателя и, следовательно, требует нейтрализации.

Цель работы: экспериментальное исследование износа изоляции обмоток асинхронных двигателей 0,4 кВ при комплексном воздействии разрушающих факторов: температуры, влажности, вибрации, электрического поля, несимметрии напряжения питания и фаз асинхронных двигателей, восстановление математических зависимостей износа при такой совокупности факторов, разработка методики, алгоритма и программы компьютерного прогнозирования износа и оценки срока службы электродвигателей 0,4 кВ, а также разработка принципов и схемотехнической реализации средств снижения износа изоляции электрических двигателей.

Задачи исследований:

1) анализ разработанных к настоящему времени методов математического моделирования и оценки состояния изоляции электродвигателей, и определение на этой основе перспективных направлений работ поданной проблеме;

2) разработка установки и методики экспериментального исследования комплексного влияния разрушающих факторов на старение изоляции электродвигателей 0,4 кВ и методики ускорения испытаний;

3) выбор и экспериментальная проверка степени ускорения испытания изоляции электродвигателей, экспериментальные исследования пробоев изоляции обмоточных проводов электродвигателей и скорости их теплового и электрического старения, влияния на них вибрации и влажности среды, разработка математической модели старения изоляции при воздействии вибрации;

4) получение коэффициентов аналитических зависимостей износа изоляции, описывающих результаты экспериментальных исследований;

5) разработка методики, алгоритма и компьютерной программы прогнозирования сроков службы электродвигателей по результатам измерений эксплуатационных параметров: температуры и влажности среды, токов и напряжений фаз, вибрационных смещений, а также их экспериментальная проверка;

6) разработка средств снижения износа изоляции асинхронных электродвигателей.

Объектом исследования являются обмотки асинхронных электродвигателей 0,4 кВ, способы диагностики их износа.

Предметом исследования является зависимость продолжительности срока службы изоляции АД от влияния разрушающих эксплуатационных факторов.

Методы исследований.

В работе использованы математические методы восстановления аналитических зависимостей (регрессионный анализ), математического моделирования процессов старения изоляции при изменяющемся характере разрушающих факторов и интегрирования износа за протяженные интервалы времени, экспериментального исследования пробоев изоляции при комплексном воздействии разрушающих факторов, а также натурные эксперименты.

Научная новизна работы заключается в следующем:

1. Получены многокоординатные зависимости сроков службы изоляции двигателей от комплекса воздействующих факторов.

2.Восстановлены и проверены по экспериментальным данным зависимости скорости старения изоляции обмоток электродвигателей от напряжения, влажности, вибрации.

3. Разработаны методика, алгоритм и программа прогнозирования износа и сроков службы электродвигателей, позволяющая выполнять дифференцированные оценки степени снижения сроков службы двигателей от воздействия температуры среды, загрузки двигателей, асимметрии напряжения питания,- асимметрии фаз статора, уровня питающего напряжения, влажности и вибрации.

4. Разработаны устройства снижения износа изоляции обмоток электродвигателей.

Практическая ценность заключается в следующем:

Предложенная математическая модель и программа диагностики срока службы электродвигателей позволяет определить срок службы, время жизни электродвигателей и очередность выхода их из строя;

Предложенная методика прогнозирования выхода из строя электродвигателей позволяет выявить разрушающий фактор, определяющий сокращение срока службы и принять возможные меры для его устранения;

Разработанные средства снижения износа позволяют продлить срок безаварийной работы электроприемников и электродвигателей на электрических станциях и промышленных предприятиях;

Способы и средства повышения срока службы электродвигателей обеспечивают в условиях эксплуатации более длительную их работу.

На защиту выносятся следующие положения:

1. Методика ускорения испытаний на основе расширенного диапазона логарифмической зависимости срока службы изоляции от напряжения и ее экспериментальная проверка.

2. Экспериментальные исследования пробоев изоляции обмоточных проводов электродвигателей и скорости их теплового и электрического старения, влияния на них вибрации и влажности среды.

3. Математическая модель старения изоляции при воздействии вибрации, параметры зависимостей износа изоляции, описывающих результаты экспериментальных исследований.

4. Методика, алгоритм и компьютерная программа прогнозирования сроков службы электродвигателей по результатом измерений эксплуатационных параметров: температуры и влажности среды, токов и напряжений фаз, вибрационных смещений.

5. Средства снижения износа изоляции асинхронных двигателей.

Реализация и внедрение результатов работы

Изыскательские измерения параметров рабочих режимов и компьютерное прогнозирование сроков службы двигателей внедрены в ОАО «СевКавНИПИгаз» (г. Ставрополь), с.х. предприятие «Саблин-ское» (Ставропольский край).

Апробация работы Результаты выполненных исследований прошли апробацию на межвузовской краевой научно-практической конференции молодых ученых "Проблемы теории и практики социально-экономических реформ" (г. Ставрополь, 1993 г.); XV сессии семинара АН РФ "Кибернетика электрических систем" (г. Новочеркасск, 1994 г.); научно-технических конференциях Ставропольской государственной сельскохозяйственной академии (г. Ставрополь, 1993. 1999) г.). IV Международной конференции «Физико-технические проблемы электротехнических комплексов и материалов» (МЭИ, 2001 г.).

Публикации.

Объем работы.

Диссертационная работа состоит из введения, пяти глав, заключения, списка использованных источников из 122 наименований, 63 приложений.

Похожие диссертационные работы по специальности «Электростанции и электроэнергетические системы», 05.14.02 шифр ВАК

  • Разработка многоканальной системы мониторинга асинхронных электродвигателей электростанций 2006 год, кандидат технических наук Пустахайлов, Сергей Константинович

  • Обобщение моделей и характеристик работы трехфазных электродвигателей в сетях 0,4 и 6 кВ и совершенствование средств их релейной защиты 1999 год, доктор технических наук Минаков, Владимир Федорович

  • Метод диагностики асинхронных электродвигателей в сельском хозяйстве на основе анализа параметров их внешнего магнитного поля 2009 год, кандидат технических наук Тонких, Василий Геннадьевич

  • Совершенствование защит асинхронных электродвигателей 0,4 кВ от перегрузки 2003 год, кандидат технических наук Кимкетов, Мурат Майевич

  • Непрерывный контроль температуры предельно нагруженного оборудования электровоза 2005 год, доктор технических наук Смирнов, Валентин Петрович

Заключение диссертации по теме «Электростанции и электроэнергетические системы», Минакова, Татьяна Евгеньевна

Основные результаты теоретических и экспериментальных исследований диссертационной работы сводятся к следующему.

1. Разработана установка для экспериментальных исследований комплексного влияния на старение изоляции асинхронных двигателей 0,4 кВ разрушающих факторов: температуры (которая может быть как результатом воздействия окружающей среды, так и вызываться токами обмоток, их асимметрией, а также несимметрией напряжения питания), напряженности электрического поля, вибрационного смещения, влажности, вызывающих старение и разрушение изоляции обмоток электродвигателей в условиях эксплуатации.

2. Предложена и экспериментально проверена методика ускорения испытаний изоляции электродвигателей, использующая расширенный диапазон линейной зависимости логарифма срока службы изоляции от логарифма напряженности электрического, поля. Произведен выбор коэффициента ускорения испытаний, осуществлена экспериментальная проверка соответствия результатов испытаний законам старения изоляции. Методика позволила увеличить коэффициент ускорения с сотен раз до десятков тысяч.

3. Получены числовые характеристики времени старения изоляции электродвигателей в функции от температуры и влажности, напряженности электрического поля, вибрации при постоянстве воздействия трех эксплуатационных параметров и изменении четвертого. По генеральной совокупности зарегистрированной интенсивности пробоев от времени при различных уровнях воздействия разрушительных факторов выполнено нормирование большой выборки событий и получена обобщенная гистограмма распределения пробоев изоляции обмоток во времени.

4. Разработана математическая модель электрического старения и прогнозирования срока службы изоляции статорных обмоток электродвигателей, основанная на постоянстве снижения срока службы в логарифмических координатах от напряжения (или напряженности электрического поля).

5. Предложено выделять из скорости износа изоляции, обусловленной токами обратной последовательности, составляющую, вызванную несимметрией питающего напряжения. Для этого используются результаты измерений напряжений фаз, расчет вызванного ею электромагнитного момента и части тока обратной последовательности, создающего данный тормозной момент.

6. Предложена математическая модель влияния влажности среды на износ изоляции двигателей.

7. Выполнено обоснование обратной логарифмической зависимости влияния вибрации на срок службы изоляции электродвигателей при ее тепдовом и электрическом старении и разработана соответствующая математическая модель.

8. Разработана и реализована методика восстановления аналитических зависимостей старения изоляции от уровней воздействующих факторов на основе численного оптимизационного решения систем нелинейных уравнений, имеющих порядок больший или равный числу коэффициентов аналитических зависимостей, от подлежащих восстановлению, путем минимизации функционала - среднеквадратичного отклонения экспериментальных сроков старения от расчетных.

9. Разработаны методика, алгоритм и программа прогнозирования сроков службы электродвигателям по эксплуатационным параметрам, основанная на измерениях в режимные дни токов, напряжений и вибрации двигателей, температуры и влажности среды, моделировании износа изоляции и расчете дифференцированных значений степени снижения сроков службы двигателей от воздействия температуры среды, загрузки двигателя, асимметрии напряжения питания, асимметрии фаз статора, уровня питающего напряжения, влажности и вибрации. Методика проверена экспериментально прогнозированием сроков службы 14 электродвигателей по их эксплуатационным параметрам: отклонение экспериментальных и расчетных значений наиболее часто составляют 25 %.

10. Разработано устройство защиты электродвигателей от ускоренного износа в анормальных режимах работы, защищенное патентом РФ №2117380, и предназначенное для предотвращения ускоренного износа асинхронных электродвигателей при отклонениях параметров режимов электродвигателей за предельно допустимые границы. Отличительные особенности разработанного устройства защиты обеспечивают расширенную область применения, возможность использования широкого спектра датчиков контролируемых физических параметров, повышенную устойчивость как отключенного, так и, включенного состояния коммутатора, простоту и надежность схемы, не требующую стабилизированного источника питания.

11. Разработано устройство включения элетроприемников с пониженными коммутационными токами и уменьшенным износом (решение комитета РФ по патентам от 25.10.96 г. о выдаче патента на изобретение), предназначенное для снижения пусковых, и особенно апериодических составляющих токов пуска и самозапуска электродвигателей, а соответственно - уменьшения износа и разрушений от их действия. Отличительные особенности устройства снижения коммутационных токов обеспечивают уменьшение амплитуды токов начальных этапов пусков и самозапусков, а в квадратичной зависимости - уменьшение механических сил и вызванных ими износа и разрушений.

ЗАКЛЮЧЕНИЕ

Список литературы диссертационного исследования кандидат технических наук Минакова, Татьяна Евгеньевна, 2002 год

1. Андрианов В.Н. и др. Практикум по электрическим машинам и аппаратам / М.: Колос, 1989. 272 с.

2. Андрианов В.Н. Электрические машины и аппараты/ М.: Колос, 1971. 448 с.

3. Асинхронные двигатели серии 4А: Справочник/А.Э. Кравчик и др. / М.: Энергоиздат, 1982. 504 с.

4. А.С. N 845182. (СССР). Способ изготовления эмалированных проводов и устройство для его осуществления./ Ю. И. Линии и др.- опубл. в Б. И., 1981, N25.

5. Белоруссов Н.И. и др. Электрические кабели, провода и шнуры: (справочник). / М.: Энергия, 1979. 416 с.

6. Бернштейн Л.М. Изоляция электрических машин общепромышленного применения (Материалы, конструкция, технология, испытания) /М.-Л.: Энергия, 1965.-352 с.

7. Бернштейн Л.М. Изоляция электрических машин общепромышленного применения/М.: Энергия, 1971. 367с.

8. Богородицкий Н.П., Пасынков В.В., Тареев Б.М. Электротехнические материалы / Л.:Энергоатомиздат, 1985. 304 с.

9. Бодин А.П., Московкин Ф.И. Электрооборудование для сельского хозяйства. / М.: Россельхозиздат, 1981. 302 с.

10. Будзко И.А., Кирилин Н.И. Расчет характеристик защиты асинхронных электродвигателей из условия теплового старения изоляции.//МиЭСХ. 1969, N4, с. 26-29.

11. Буторин В.А., Ильин Ю.П. Оценка ресурса изоляции электродвигателей. // МиЭСХ. 1987, N 10, с. 53 56.

12. Быстрицкий Д.Н., Марьяхин Ф.Г., Павлов А.В. Тепловой режим электродвигателя при длительной работе в повторно-кратковременном режиме с частыми пусками / М.: Науч. тр. ВИЭСХ, т.40, 1976, с.15-21.

13. Быстрицкий Д.Н. Методика и элементы теории численных расчетов эксплуатационных характеристик асинхронных двигателей, применяемых в сельскохозяйственном производстве / М.:ВИЭСХ, 1969 -150с.

14. Ваксер Н.М., Бородулина JI.K. и др. Прогнозирование долговечности систем изоляции повышенной нагревостойкости при комбинированном старении. //Электротехника, 1991, № 8, с. 17-20

15. Ванурин В.Н. Обмотки асинхронных электродвигателей / М.: Колос, 1978.-96 с.

16. Ванурин В.Н. Электрические машины /М.: Колос, 1995 256 с. 17.

17. Вешеневский С.Н. Характеристики двигателей в электроприводе / М.: Энергия, 1977.-432 с.

18. Вишневский В.,Мякишев Е. и др. Влияние продолжительности сушки при компаундировании на качество микалентной изоляции /Вестник: Электротехническая промышленность, 1964, вып. 247 с. 32-33.

19. Влах И., Сингал К. Машинные методы анализа и проектирование электронных схем / М.: Радио и связь, 1988 560 с.

20. Вольдек А.И. Электрические машины / JL: Энергия, 1974. -839 с.

21. Воронецкий А.П., Девятова Т.Е. Автоматизированный учет и управление техническими подразделениями сельскохозяйственного производства / Сб.науч. тр. Ставроп СХИ Ставрополь, 1984, с. 5861.

22. Гейлер Л.Б. Электропривод в тяжелом машиностроении / М.: ГНТИ Машиностроительной литературы, 1958. 588 с.

23. Голоднов Ю.М. Самозапуск электродвигателей/ М.: Энергоатом-издат, 1985. 136.

24. Гольдберг О.Д., Абдуллаев И. М., Абиев А. Н. Автоматизация контроля параметров и диагностика асинхронных двигателей. / М.: Энергоатомиздат, 1991. 160 с.

25. Гольдберг О.Д. Качество и надежность асинхронных двигателей / М.: Энергия, 1968 с.

26. Гольдберг О.Д. Полуавтоматические и автоматические установки для контрольных испытаний электродвигателей / Вестник: Электротехническая промышленность, 1964, вып. 248, с.41

27. Грундулис А.О. Защита электродвигателей в сельском хозяйстве. / М.: Агропромиздат, 1988. 111 с.

28. Грузов Л.Н. Методы математического моделирования электрических машин / Л.: Госэнергоиздат, 1953. 136 с.

29. Данилов В.Н. Надежность системы "электродвигатель аппарат защиты" от аварийных режимов работы. // Техника в сельском хозяйстве, 1988, N6, с. 20-23.

30. Демирчян К.С. Моделирование и машинный расчет электрических цепей / М.: Высш. шк., 1988. 335 с.

31. Демирчян К.С. и др. Сравнительный анализ методов численного интегрирования при расчете переходных процессов в электрических цепях // Электричество, 1976, с. 47-51.

32. Домбровский В.В., Зайчик В.М. Асинхронные машины: Теория, расчет, элементы проектирования / J1. : Энергоатомиздат, 1990. -368 с.

33. Дьяков А.Ф., Канцедалов В.Г., Берлявский Г.П. Техническая диагностика, мониторинг и прогнозирование остаточного ресурса паропроводов электростанций. М.: Изд-во МЭИ, 1998. 176 с.

34. Жугин А.Н., Редькин В.М., Минакова Т.М. и др. Комбинированный датчик несимметрии трехфазного напряжения / Сб. науч. тр. Ставроп. ГСХА Ставрополь, 1994, с. 14-21.

35. Жугин А.Н., Редькин В.М., Минакова Т.Е. Способ определения наличия цемента в емкости / Сб. науч. тр. Ставроп. ГСХА. Ставрополь, 1995, с. 73-76.

36. Зиньковский А.И. Медный обмоточный провод // Радио, 1994, N 5, с. 44.

37. Иванов-Смоленский А.В. Электрические машины / М.: Энергия, 1980.-928 с. ,

38. Иноземцев Е.К. Надежность мощных электродвигателей электростанций // Энергетик, 1991, N 9, с. 30 31.

39. Интенсификация процессов пропитки и сушки обмоток электродвигателей // Вестник: Электротехническая промышленность, 1964, вып. 248, с. 37-39.

40. Исследование вибраций турбогенераторов новых типов и колебаний консолей роторов. / Вестник: Электротехническая промышленность, 1964, вып.247, с.3-6.

41. Источники электропитания радиоэлектронной аппаратуры: Справочник. /Г.С. Найвельт и др. М.: Радио и связь, 1985. 276 е.

42. Канцедалов В.Г., Самойленко В.П., Дорошенко В.А. Система дистанционной диагностики энергооборудования ТЭС и АЭС// Электрические станции, 1983, № 8, с. 28-33.

43. Козырев Н., Федорин Е. Анализ причин пробоя изоляции электрических машин в эксплуатации / Вестник: Э.Т.П., 1965,вып. 256, с. 7-8.

44. Копылов И.П., Мамедов Ф.А., БеспаловВ.Я. Математическое моделирование асинхронных машин. / М.: Энергия, 1969. 96 с.

45. Копылов И.П. Математическое моделирование электрических машин. / М.: Высш. шк., 1987. 243 с.

46. Кузнецов H.J1. Методы экспериментальной оценки надежности электрических машин / М.: Изд-во МЭИ, 1990. 84 с.

47. Мак-Кракен Д., Дорн-У. Численные методы и программирование на ФОРТРАНе. / М.: Мир, 1977. 584 с.

48. Марьяхин Г.А. и др. Бесконтактное устройство температурной защиты двигателей // МЭСХ, 1977, N 4, с. 52-53.

49. Машины электрические вращающиеся от 50 до 355 габарита. Двигатели асинхронные серии 4А трехфазные с короткозамкнутым ротором. Технические условия // ГОСТ 19523-81. / М.: Изд-во стандартов, 1985. 54 с.

50. Методические указания. Надежность в технике. Методы оценки показателей надежности по экспериментальным данным. РД 50- -690- 89. - М.: Госком СССР по стандартам, 1990.

51. Методика (основные положения) определения экономического эффекта испоьзования в народном хозяйстве новой техники, изобретений и рационализаторских предложений. М.: «Экономика»,

52. Минаков В.Ф. и др. Классификация и характеристика рабочих, анормальных и аварийных режимов трехфазных асинхронных двигателей. / Сб. науч. тр. Ставроп. ГосСХА, Ставрополь, 1985, с.88-96.

53. Минаков В.Ф. и др. Методика типизации параметров двигателей серии 4А // Изв. вузов. Электромеханика, 1993, N 6, с. 77.

54. Минаков В.Ф. и др. Современное состояние средств многофункциональной защиты асинхронных двигателей 0,4 кВ./ Сб. науч. тр. Ставроп. Гос. СХА, Ставрополь, 1994. с. 4-13.

55. Минаков В.Ф., Мамаев В.А., Минакова Т.Е. Расчет трехфазных электрических цепей несинусоидального тока. / Информ. лист. Ставроп. ЦНТИ, N 549-89. Ставрополь: ЦНТИ, 1989, 2 с.

56. Минаков В.Ф., Редькин В.М., Науменко А.Г. Многофакторная диагностика износа изоляции обмоток и срока службы электродвигателей по эксплуатационным параметрам. / Изв. Вузов. Электромеханика, 1992, 6, с. 73.

57. Михайлов М.М. Электроматериаловедение / М. JL: Государственное Энергетическое Издательство, 1953. - 330 с.

58. Надежность в технике. Основные понятия. Термины и определения. ГОСТ 27.002-89. М., Изд-во стандартов, 1990.

59. Новая высокоскоростная технология пропитки электродвигателей / Вестник: Электротехническая промышленность, 1966, вып. 270, с. 37-38.

60. Нормы испытания электрооборудования и аппаратов электроустановок потребителей /Главгосэнергонадзор. М.: Энергоиздат, 1982.-104 с.

61. Овчаров В.В. Диагностирование электрооборудования сельскохозяйственных предприятий по параметрам эксплуатационных режимов.//Автореферат дисс. докт". техн. наук. Челябинск, 1991. -44 с.

62. Овчаров В.В. Исследование тепловых режимов и методов тепловой защиты асинхронных электродвигателей// Дисс. на соискание ученой степени канд. техн. наук. М., 1973. - 154 с.

63. Овчаров В.В. Эксплуатационные режимы работы и непрерывная диагностика электрических машин в сельскохозяйственном производстве./ Киев: изд-во УСХА, 1990. 168 с.

64. Паркесов В.Г. Разработка теплового аналога асинхронных крановых двигателей. / Тезисы докладов Всесоюзного научно-технического семинара: Эффективность и качество электроснабжения промышленных предприятий,- Жданов, 1983, с. 298-299.

65. Патент РФ N 2117380, 6 НОР 5/04. Устройство для защиты электро- и технологического оборудования./ В.Ф. Минаков, В.В. Платонов, Е.Ф. Минаков, Т.Е. Минакова и др. 93027024. - 3аявл.25.05.93, опубл. 10.08.98, БИ N 22, 1998.

66. Пешков И.Б. Обмоточные провода./ М.: Энергоатомиздат, 1983. -352 с.

67. Прищеп Л.Г., Панарин Н.В. Пути повышения надежности и улучшения режимов работы электродвигателей // МЭССХ, 1972, N 9.

68. Прищеп В.Г., Шичков Л. П. Уточненный расчет эксплуатационных показателей электроприводов сельскохозяйственного назначения. // Сб. трудов "Комплексная электрификация сельскохозяйственного производства" / М.: ВСХИЗО, 1976, вып. 126, с. 54-63.

69. Прищеп Л.Г., Егамбердиева М.М. Предупреждение отсыревания и сушка изоляции электродвигателей с использованием конденсаторов.// Сб. науч. трудов МИИСП, т. IX, вып. III, 1972.

70. Провода эмалерованные нагревостойкие марки ПЭТ -2 / Вестник: Электротехническая промышленность, 1964, вып. 246, с. 78-79.

71. Пястолов А. А., Большаков А.А., Петров Г.А. Эксплуатационная надежность электродвигателей, используемых в сельскохозяйственном производстве. // Науч. тр. по электрификации с.х., М.:ВИЭСХ, 1971, с. 93-100.

72. Разрушение изоляционных материалов во влажной и загрязненной среде. / Вестник: Электротехническая промышленность, 1965, вып. 256, с.55-56.

73. Редькин В.М., Минакова Т.Е., Науменко А.Г. Методика многофакторной диагностики срока службы изоляции электродвигателей./ Сб. науч. тр. Ставроп. СХИ. Ставрополь, 1993,с. 35-38.

74. Редькин В.М., Минакова Т.Е. Разработка алгоритма четырехфак-торной диагностики срока службы электродвигателей. / Сб. науч. тр. Ставроп. ГСХА. Ставрополь, 1994, с. 39-45.

75. Редькин В.М., Минакова Т.Е. Установка для многофакторной диагностики срока службы изоляции электродвигателей. / Сб. науч. тр. Ставроп. ГСХА. Ставрополь, 1995, с. 23-26.

76. Редькин В.М., Шарипов И.К., Жугин А.Н., Минакова Т.Е. и др. Способ повышения быстродействия токовой защиты асинхронных двигателей. / Сб. науч. тр. Ставроп ГСХА. Ставрополь, 1995, с. 101103.

77. Редькин В.М., Минакова Т.Е., Конопелько В.В. Проблемы компьютеризации подготовки инженеров- электриков. / Тезисы докладов 3 межвузовской ПМК " Компьютеризация учебного процесса по электротехническим дисциплинам". Астрахань, 1995, с. 42-42.

78. Релейная защита и противоаварийная автоматика: Переводы докладов./Международная конференция по большим электрическим системам (СИГРЭ-76). Под. ред. В.М.Ермоленко, А.М.Федосеева. -М.: Энергия, 1978. 144 с.

79. Рязанцев П.М., Шварчук Р.И. О повышении надежности работы асинхронных двигателей в сельском хозяйстве./ Сб. АИМСХ "Применение электроэнергии и электробезопасность в сельском хозяйстве". Ростов, Изд-во Ростовского университета, 1974, с. 14-16.

80. Сивокобыленко В.Ф., Костенко В.И. Причины повреждения электродвигателей в пусковых режимах на блочных электростанциях// Электрические станции, 1974, N 1, с. 33-35. 80.

81. Сидельников Б.В. Исследование режимов работы электрических машин методом математического моделирования.// Дисс. на соискание ученой степени докт. техн. наук.- Л., 1980. 466 с.

82. Сипайлов Г.А. др. Тепловые, гидравлические и аэродинамические расчеты в электрических машинах./ М.: Высш. шк., 1989. 239 с.

83. Скоростная пропитка обмоток якоря полиэфирной смолой методом инжекции./ Вестник электротехнической промышленности, 1966, вып. 271, с. 51.

84. Славин P.M. Методические основы расчета технологического экономического эффекта //Механизация и электрификация сельского хозяйства. 1980 -№ 8.

85. Сорокер Т.Г. и др. Развитие асинхронных двигателей общего назначения.// Электротехника, 1978, N 9, с. 3 7.

86. Справочная книга радиолюбителя-конструктора. Кн. 2 J Р.Г.Варламов, В.П. Замятин, Л.М. Канчинский и др. Под. ред. Н.И. Чистякова. М.: Радио и связь, 19^3. - 336 с.

87. Справочник по теоретическим основам радиоэлектроники./ Под ред. Б.Л. Кривицкого, В.Н. Дулина, Т. 1, М.: Энергия, 1977.- 504 с.

88. Справочник по электрическим машинам./Под общ. ред. И.П. Ко-пылова и Б.К. Клокова. Т.1.- М.:Энергоатомиздат, 1988. 456 с.

89. Справочник по электротехническим материалам. Т. З./Под ред Е.В. Корицкого и др. Л.: Энергоатомиздат, 1988. 732 с.

90. Сыромятников И.А. Режимы работы асинхронных и синхронных электродвигателей./М.: Энергоатомиздат, 1984. 240 с.

91. Тардов Б.Н. Изоляция электрических машин. (Вопросы контроля)./ М.: ВНИИЭМ, 1966.- 98 с.

92. Техника высоких напряжений. / Под общ. ред. Д.В. Разевига. -М.: Энергия, 1976. 488 с.

93. Техника высоких напряжений. / Под ред. М.В. Костенко. М.: Высш. шк., 1973. - 551 с.

94. Тищенко Н.А. Проблема надежности электродвигателей // Электричество, 1961, N И, с. 7-13, N 12, с. 16-19.93.

95. Устройство для включения электроприемников с пониженными коммутационными токами /В.Ф. Минаков, Е.Ф. Минаков, Т.Е. Мина-кова и др. решение о выдаче патента на изобретение по заявке N 93027024. - Заявл. 24.08.93, решение 25.10.1996.

96. Фотоионизация и электрический пробой./ Вестник: электротехническая промышленность, 1964, вып. 246, с. 90-91.

97. Хемминг Р. В. Численные методы. / М. : Наука, 1972. 400 с.

98. Хомутов О.И. Система технических средств и мероприятий повышения эксплуатационной надежности изоляции электродвигателей, используемых в сельскохозяйственном производстве. // Автореферат дисс. докт. техн. наук. Челябинск, 1992. - 48 с.

99. Хорольский В.Я. и др. Исследования надежности устройства многофункциональной защиты асинхронных электродвигателей 0,4 кВ типа УЗДМ-0,4./В сб. науч. тр. Ставроп. СХИ. Ставрополь, 1992, с. 73-81.

100. Черепенин П.Г. Монтаж асинхронных двигателей до 1000 кВт./ М.: Энергия, 1964. 56 с.

101. Чиликин М.Г., Сандлер А.С. Общий курс электропривода. Учебник для вузов./М.: Энергоиздат, 1981. 576 с.

102. Чуа JI.O., Пен-Мин Лин. Машинный анализ электронных схем (алгоритмы и вычислительные методы)./М.: Энергия, 1980. -640 с.

103. Штофа Ян. Электротехнические материалы в вопросах и ответах./ М.: Энергоатомиздат, 1984. 200 с.

104. Щербачев О.В. и др. Применение цифровых вычислительных машин в электроэнергетике./JI.: Энергия, 1980. 240 с.

105. Электрическая энергия. Требования к качеству электрической энергии в электрических сетях общего назначения.//Г0СТ 13109-87./М.: Изд-во стандартов, 1987.-17 с.

106. Электродвигатели с всыпной обмоткой мощностью от 0,4 до 93 кВт./ Вестник: электротехническая промышленность, 1964, вып. 249, с. 38 43.

107. Электроизоляционные материалы и методы изолирования в США./ Вестник: электротехническая промышленность, 1965, вып. 252, с. 53 54.

108. Электротехнический справочник. Т. 1:Общие вопросы. Электротехнические материалы./Под ред. профессоров МЭИ В.Г. Герасимова и др. М.: Энергоатомиздат, 1985. - 488 с.

109. Электротехнический справочник. Т2./Под общ. ред. проф. МЗИ В.Г. Герасимова, П.Г. Грудинского, Л.А. Жукова и др. Т 2 Электротехнические устройства. - М.: Энергоиздат, 1981. - 640 с.

110. Эпштейн И.Я. Методика оценки влияния коммутационных аппаратов на эксплуатационную надежность изоляции электрооборудования./ Электротехника, 1990, N 2, с. 68 69.

111. Askey J.S. and JohnsonJ.S. Insulation and Dielectric Absor- ption. Characteristics of large A.S.Stator Winding//El. En- gineering Transaction, 1945, No 6, p. 347.

112. Berberich L.L., Dekin T.W. Power apparatus and systems, 1956. VIII, N4, стр. 752 -761.

113. Duke C.A., Ross C.W. JohnsonJ.S. Report of Dielectric Tests of a Large Hydrogenerator// Transactions of the A.E. of E.E., 1955, vol. 74, N 1, p.673-679.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Электродвигатели – незаменимые помощники на различных производственных, промышленных и других предприятиях, где необходимо наладить качественную работу множества механизмов, а также привести в действие какие-либо приборы.

Срок эксплуатации электродвигателей

Если Вы планируете приобрести какой-либо электродвигатель, то, в первую очередь, ориентируйтесь на его технические характеристики, ведь моделей и разновидностей электродвигателей достаточно много. Так в продаже имеются крановые, фланцевые, щеточные, маломощные, высокооборотистые и другие электродвигатели, которые отличаются не только мощностью, но и необходимым напряжением и питанием от сети.

Необходимо помнить, что срок службы электродвигателя напрямую зависит от условий его эксплуатации. Поэтому перед применением внимательно ознакомьтесь с инструкцией к электродвигателю, так как многие двигатели не рекомендуется использовать при температуре выше, а также ниже 40 С.

Кроме этого, обращайте внимание на степень защиты, так как большинство электродвигателей не предназначены для работы во взрывоопасных помещениях. По последним данным, ежегодно из строя выходит около 20% двигателей в год, что происходит в результате физического износа инструментов. Обязательно проводите диагностику двигателя и соблюдайте правила эксплуатации, что обеспечит долгосрочный срок службы.

Что необходимо проверять при работе двигателей

Контролируйте наличие и исправность прокладок, а также состояние фланцевых соединений, которые обеспечивают защиту прибора от любых внешних воздействий. Кроме этого, нужно обращать внимание на целостность изоляционных деталей и на наличие защиты от перегрузки. Следите за состоянием средств контроля уровня масла, высотой слоя масла, соответствием масла необходимым нормативным требованиям, а также обеспечивайте исправность системы подачи защитного газа в вентиляторах, фильтрах и трубопроводах.

Установку электрических двигателей следует доверять только проверенным компаниям. Желательно не монтировать электродвигатель самостоятельно, особенно, если Вы не знаете особенностей подключения электрических составляющих. Наша компания может вам предложить не только монтаж двигателей, но и ремонт электродвигателей , вышедших из строя.

  Надежность - отличительная черта наших электродвигателей.

  Помимо основных параметров асинхронного двигателя - мощности и скорости вращения, не менее важными параметрами являются надежность и ресурс.

  В асинхронном двигателе две главные причины отказов - межвитковые замыкания статорной обмотки и дефекты или износ подшипникового узла.

  Влага - главный враг обмотки. Работа асинхронного двигателя приводит к нагреву обмоток, особенно в лобовой части и, следовательно, к растрескиванию эмали. Когда же асинхронный двигатель остывает, то рассеянная в воздухе вода оседает на эмали и при многократном повторении вода попадает в трещины и полости обмотки, из которых уже не уходит. В дальнейших циклах вода разрушает эмаль, а затем и закорачивает витки обмотки.

  Дополнительная пропитка обмоток асинхронного двигателя термостойким гидрофобным компаундом с противогрибковым действием исключает попадание воды в обмотку через микротрещины эмали провода. Микротрещины эмали - следствие вредных факторов /перепады температур, плесень, влажность, абразивы в полости двигателя в виде пыли из оксидов материала корпуса и системы ротор статор/. Препятствуя образованию и развитию микротрещин, пропитка поднимает и уровень допустимой рабочей температуры асинхронного двигателя, повышая тем самым коэффициент его использования по мощности, и надежнее защищает асинхронный двигатель от перегрузок. Та же влага, оседая на поверхности статора и ротора, способствует образованию абразивной пыли внутри корпуса, поэтому необходимо наносить защитную эмаль и на внутренние поверхности статора и ротора.

  Второй враг - перегрев. Перегрев асинхронного двигателя приводит к увеличению токов по причине уменьшения магнитной проницаемости железа, уменьшению противо э.д.с., непроизводительной потере электроэнергии в обмотках и сокращению ресурса асинхронного двигателя, т.к. старение изоляции и ухудшение свойств смазки при этом резко прогрессируют. Защита асинхронного двигателя от тепловых перегрузок обеспечивается своевременным обесточиванием обмоток при их перегреве или включением дополнительной вентиляции.

  Обесточивание обмоток асинхронного двигателя осуществляется срабатыванием НЗ (нормально замкнутого) или НР (нормально разомкнутого) термодатчика с мембранным типом срабатывания, который может быть установлен в тепловом контакте с обмоткой как одной, так и трех фаз по отдельности, тем самым, обеспечивая более надежную защиту. Термодатчик при своем срабатывании обесточит катушку магнитного пускателя или включит другую схему управления асинхронным двигателем.

  Дефекты подшипникового узла устраняются установкой наружного кольца подшипника на термокомпенсированный эпоксидный компаунд определенной вязкости, который устраняет вибрации асинхронного двигателя от наличия зазора в сопряжении подшипник корпус и не дает прогрессировать вибрации по причине разбивания исходных неровностей механообработки сопрягаемых поверхностей зазоров самим кольцом.

Для увеличения ресурса подшипников обязательна смазка . Смазка обеспечивает “эффект проскальзывания” пары качения: шарик и кольцо. Если проскальзывания нет, то соприкосновение двух металлов в присутствии воды вызывает питинг - “выкрашивание” до рожки качения. Смазка защищает контакт металлов от проникновения воды.

Скорому износу подшипников способствуют т.н. “блуждающие токи” . Откуда они берутся? В статоре возбуждается магнитное поле, которое проходит по железу и замыкается через железо ротора. В беличьей клетке ротора наводятся индукционные токи, которые взаимодействуют с полем статора, что и является причиной вращения.

Но магнитное поле проходит также и через подшипник (поле рассеяния) и это поле вызывает эрозию. Вода, водяные поры и смазка - это электролит, подшипник - это металл. Магнитное поле индуцирует блуждающие токи через “электролит” и приводит к отложению солей на дорожках качения подшипника. Для исключения этого, используются специальные смазки, которые обладают тем свойством, что в месте трения качения выделяется графит, образующий карбидные пленки на шариках и на до рожках качения. Карбидные пленки обладают свойством диэлектрика и не проводят электрический ток, и поле рассеяние не приводит к эрозии.

При правильной эксплуатации вышеперечисленные мероприятия повышают ресурс асинхронного двигателя в 2-4 раза, а может быть в 10 раз , в зависимости от условий использования.