Нейтронная бомба: история создания и принципы работы оружия. Правда и вымысел о самой "гуманной" бомбе Нейтронный взрыв

Всадники Апокалипсиса обрели новые черты и стали реальными как никогда прежде. Ядерные и термоядерные бомбы , биологическое оружие , «грязные » бомбы, баллистические ракеты – все это несло угрозу массового уничтожения для многомиллионных мегаполисов, стран и континентов.

Одной из самых впечатляющих «страшилок» того периода была нейтронная бомба – разновидность ядерного оружия, специализирующаяся на уничтожении биологических организмов при минимальном воздействии на неорганические объекты. Советская пропаганда уделила много внимания этому ужасному оружию, изобретению «сумрачного гения» заокеанских империалистов.

От этой бомбы невозможно спрятаться: не спасет ни бетонный бункер, ни бомбоубежище, никакие средства защиты. При этом после взрыва нейтронной бомбы здания, предприятия и прочие объекты инфраструктуры останутся нетронутыми и попадут прямиком в лапы американской военщины. Рассказов о новом страшном оружии было так много, что в СССР про него начали сочинять анекдоты.

Что из этих рассказов правда, а что вымысел? Как работает нейтронная бомба? Есть ли подобные боеприпасы на вооружении российской армии или вооруженных сил США? Ведутся ли разработки в этой области в наши дни?

Как работает нейтронная бомба — особенности ее поражающих факторов

Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.

Принцип действия бомбы основан на свойстве быстрых нейтронов гораздо свободнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации «обычной» ядерной бомбы. Именно это свойство нейтронов и привлекло внимание военных.

Нейтронная бомба имеет ядерный заряд относительно небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения - ударная волна, световой импульс, электромагнитное излучение - приходится лишь 20% энергии.

Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые особенности.

Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем радиус поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции до 1350 метров от эпицентра оно остается опасным для жизни человека.

Кроме того, поток нейтронов вызывает в материалах (например, в броне) наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.

Не соответствует действительности распространенное мнение, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.

Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.

Использовать их в качестве средства поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ) . При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.

После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.

Кстати, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.

История создания нейтронной бомбы

Атомные бомбы, взорванные американцами над Хиросимой и Нагасаки, принято относить к первому поколению ядерного оружия. Принцип его работы основан на реакции деления ядер урана или плутония. Ко второму поколению относится оружие, в принцип работы которого положены реакции ядерного синтеза – это термоядерные боеприпасы, первое из них было взорвано США в 1952 году.

К ядерному оружию третьего поколения относятся боеприпасы, после взрыва которых энергия направляется на усиление того или иного фактора поражения. Именно к таким боеприпасам относятся нейтронные бомбы.

Впервые о создании нейтронной бомбы заговорили в середине 60-х годов, хотя его теоретическое обоснование обсуждалось гораздо раньше – еще в середине 40-х. Считается, что идея создания подобного оружия принадлежит американскому физику Самуэлю Коену. Тактическое ядерное оружие, несмотря на его значительную мощь, не слишком эффективно против бронетехники, броня хорошо защищает экипаж практически от всех поражающих факторов классического ЯО.

Первое испытание нейтронного боевого устройства было проведено в США в 1963 году. Однако мощность излучения оказалась гораздо ниже той, на которую рассчитывали военные. На доводку нового оружия потребовалось более десяти лет, и в 1976 году американцы провели очередные испытания нейтронного заряда, результаты оказались весьма впечатляющими. После этого было принято решение о создании 203-мм снарядов с нейтронной боевой частью и боеголовок для тактических баллистических ракет «Ланс».

В настоящее время технологиями, которые позволяют создавать нейтронное оружие, владеют США, Россия и Китай (возможно, и Франция). Источники сообщают, что массовый выпуск подобных боеприпасов продолжался примерно до середины 80-х годов прошлого века. Именно тогда в броню боевой техники стали повсеместно добавлять бор и обедненный уран, что практически полностью нейтрализовало основной поражающий фактор нейтронных боеприпасов. Это привело к постепенному отказу от данного вида оружия. Но как обстоит ситуация на самом деле — неизвестно. Информация такого рода находится под многими грифами секретности и практически не доступна широкой общественности.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Прямое действие гамма-излучения уступает по боевому эффекту и ударной волне, и свету. Лишь огромные дозы гамма-излучения (десятки миллионов рад) могут причинить неприятности электронике. При таких дозах плавятся металлы, а ударная волна с куда меньшей плотностью энергии уничтожит цель без подобных излишеств. Если плотность энергии гамма-излучения меньше, оно становится безвредным для стальной техники, а ударная волна и тут может сказать свое слово.

С «живой силой» тоже не все очевидно: во‑первых, гамма-излучение существенно ослабляется, например, броней, а во-вторых — особенности радиационных поражений таковы, что даже получившие абсолютно смертельную дозу в тысячи бэр (биологический эквивалент рентгена, доза любого вида излучения, производящая такое же действие в биологическом объекте, как 1 рентген) экипажи танков оставались бы боеспособными в течение нескольких часов. За это время подвижные и сравнительно малоуязвимые машины успели бы сделать многое.

Смерть электронике

Хотя прямое гамма-облучение существенного боевого эффекта не обеспечивает, он возможен за счет вторичных реакций. В результате рассеяния гамма-квантов на электронах атомов воздуха (Комптон-эффект) возникают электроны отдачи. От точки взрыва расходится ток электронов: их скорость существенно выше, чем скорость ионов. Траектории заряженных частиц в магнитном поле Земли закручиваются (а значит, двигаются с ускорением), формируя при этом электромагнитный импульс ядерного взрыва (ЭМИ ЯВ).

Любое соединение, содержащее тритий, нестабильно, потому что половина ядер этого изотопа сама по себе распадается на гелий-3 и электрон за 12 лет, и чтобы поддерживать готовность многочисленных термоядерных зарядов к применению, необходимо непрерывно нарабатывать тритий в реакторах. В нейтронной трубке трития немного, и гелий-3 поглощается там специальными пористыми материалами, а вот из ампулы этот продукт распада надо откачивать насосом, иначе ее просто разорвет давлением газа. Подобные трудности привели, например, к тому, что английские специалисты, получив в 1970-х годах из США ракеты Polaris, предпочли отказаться от американского термоядерного боевого оснащения в пользу разработанных в своей стране по программе Chevaline менее мощных однофазных зарядов деления. В предназначенных для борьбы с танками нейтронных боеприпасах была предусмотрена замена ампул с существенно уменьшившимся количеством трития на «свежие», производимая в арсеналах в процессе хранения. Могли такие боеприпасы применяться и с «холостыми» ампулами — как однофазные ядерные снаряды килотонной мощности. Можно использовать термоядерное топливо и без трития, только на основе дейтерия, но тогда, при прочих равных условиях, энерговыделение существенно снизится. Схема работы трехфазного термоядерного боеприпаса. Взрыв заряда деления (1) превращает ампулу (2) в плазму, сжимающую термоядерное топливо (3). Для усиления взрывного эффекта за счет потока нейтронов используется оболочка (4) из урана-238.

В энергию ЭМИ ЯВ переходит лишь 0,6% энергии гамма-квантов, а ведь их доля в балансе энергии взрыва сама по себе мала. Вклад вносит и дипольное излучение, возникающее за счет изменения плотности воздуха с высотой, и возмущение магнитного поля Земли проводящим плазмоидом. В результате образуется непрерывный частотный спектр ЭМИ ЯВ — совокупность колебаний огромного числа частот. Существенен энергетический вклад излучения с частотами от десятков килогерц до сотен мегагерц. Эти волны ведут себя по‑разному: мегагерцевые и более высокочастотные затухают в атмосфере, а низкочастотные — «ныряют» в естественный волновод, образованный поверхностью Земли и ионосферой, и могут не раз обогнуть земной шар. Правда, «долгожители» эти напоминают о своем существовании лишь хрипением в приемниках, похожим на «голоса» грозовых разрядов, а вот их более высокочастотные родственники заявляют о себе мощными и опасными для аппаратуры «щелчками».

Казалось бы, такие излучения вообще должны быть безразличны военной электронике — ведь любое устройство с наибольшей эффективностью принимает волны того диапазона, в каком их излучает. А принимает и излучает военная электроника в гораздо более высокочастотных, чем ЭМИ ЯВ, диапазонах. Но ЭМИ ЯВ действует на электронику не через антенну. Если ракету длиной в 10 м «накрывала» длинная волна с не поражающей воображение напряженностью электрического поля в 100 В/см, то на металлическом ракетном корпусе наводилась разность потенциалов в 100 000 В! Мощные импульсные токи через заземляющие связи «затекают» в схемы, да и сами точки заземления на корпусе оказывались под существенно отличающимися потенциалами. Токовые перегрузки опасны для полупроводниковых элементов: для того чтобы «сжечь» высокочастотный диод, достаточно импульса мизерной (в десятимиллионную долю джоуля) энергии. ЭМИ занял почетное место могущественного поражающего фактора: иногда им выводилась из строя аппаратура за тысячи километров от ядерного взрыва — такое было не по силам ни ударной волне, ни световому импульсу.

Понятно, параметры вызывающих ЭМИ взрывов были оптимизированы (в основном высота подрыва заряда данной мощности). Разрабатывались и меры защиты: аппаратура снабжалась дополнительными экранами, охранными разрядниками. Ни один образец боевой техники не принимался на вооружение, пока не была доказана испытаниями — натурными или на специально созданных имитаторах — его стойкость к ЭМИ ЯВ, по крайней мере такой интенсивности, которая характерна для не слишком уж больших дистанций от взрыва.


Бесчеловечное оружие

Однако вернемся к двухфазным боеприпасам. Их основной поражающий фактор — потоки быстрых нейтронов. Это породило многочисленные легенды о «варварском оружии» — нейтронных бомбах, которые, как писали в начале 1980-х советские газеты, при взрыве уничтожают все живое, а материальные ценности (здания, технику) оставляют практически неповрежденными. Настоящее мародерское оружие — взорвал, а потом приходи и грабь! На самом деле любые предметы, подвергшиеся воздействию значительных нейтронных потоков, опасны для жизни, потому что нейтроны после взаимодействия с ядрами инициируют в них разнообразные реакции, становящиеся причиной вторичного (наведенного) излучения, которое испускается в течение длительного времени после того, как распадется последний из облучавших вещество нейтронов.

Для чего же было предназначено это «варварское оружие»? Двухфазными термоядерными зарядами оснащались боевые части ракет Lance и 203-мм гаубичные снаряды. Выбор носителей и их досягаемость (десятки километров) указывают на то, что создавалось это оружие для решения оперативно-тактических задач. Нейтронные боеприпасы (по американской терминологии — «с повышенным выходом радиации») предназначались для поражения бронетехники, по численности которой Варшавский пакт превосходил НATO в несколько раз. Танк достаточно стоек к воздействию ударной волны, поэтому после расчетов применения ядерного оружия различных классов против бронетехники, с учетом последствий заражения местности продуктами деления и разрушений от мощных ударных волн, основным поражающим фактором решили сделать нейтроны.

Абсолютно чистый заряд

В стремлении получить такой термоядерный заряд попытались отказаться от ядерного «запала», заменив деление сверхскоростной кумуляцией: головной элемент струи, состоявшей из термоядерного топлива, разогнали до сотни километров в секунду (в момент столкновения температура и плотность значительно возрастают). Но на фоне взрыва килограммового кумулятивного заряда «термоядерная» прибавка оказалась ничтожной, и эффект зарегистрировали лишь косвенно — по выходу нейтронов. Отчет об этих проведенных в США экспериментах был опубликован в 1961 году в сборнике «Атом и оружие», что при тогдашней параноидальной секретности само по себе свидетельствовало о неудаче.
В семидесятых, в «неядерной» Польше, Сильвестр Калиский теоретически рассмотрел сжатие термоядерного топлива сферической имплозией и получил весьма благоприятные оценки. Но экспериментальная проверка показала, что, хотя выход нейтронов, по сравнению со «струйным вариантом», возрос на много порядков, нестабильности фронта не позволяют достичь нужной температуры в точке схождения волны и реагируют только те частицы топлива, скорость которых, из-за статистического разброса, значительно превышает среднее значение. Так что совсем «чистый» заряд создать не удалось.

Рассчитывая остановить навал «брони», в штабах НАТО разработали концепцию «борьбы со вторыми эшелонами», стараясь отнести подальше рубеж применения нейтронного оружия по противнику. Основная задача бронетанковых войск — развитие успеха на оперативную глубину, после того как их бросят в брешь в обороне, пробитую, например, ядерным ударом большой мощности. В этот момент применять радиационные боеприпасы уже поздно: хотя 14-МэВ нейтроны незначительно поглощаются броней, поражения экипажей излучением сказываются на боеспособности не сразу. Поэтому такие удары планировались по выжидательным районам, где изготавливались к введению в прорыв основные массы бронетехники: за время марша к линии фронта на экипажах должны были проявиться последствия облучения.

Целью создания нейтронного оружия в 60-х-70-х годах являлось получение тактической боеголовки, главным поражающим фактором в котором являлся бы поток быстрых нейтронов, излучаемых из области взрыва.

Создание такого оружия обусловила низкая эффективность обычных тактических ядерных зарядов против бронированных целей, таких как танки, бронемашины и т. п. Благодаря наличию бронированного корпуса и системы фильтрации воздуха бронетехника способна противостоять всем поражающим факторам ядерного взрыва. Поток нейтронов же с легкостью проходит даже через толстую стальную броню. При мощности в 1 кт смертельная доза облучения в 8000 рад, которая ведет к немедленной и быстрой смерти (минуты), будет получена экипажем танка на расстоянии в 700 м. Опасный для жизни уровень достигается на дистанции 1100. также дополнительно, нейтроны создают в конструкционных материалах (например, броне танка) наведенную радиоактивность.

Из-за очень сильного поглощения и рассеивания нейтронного излучения в атмосфере делать мощные заряды с увеличенным выходом излучения нецелесообразно. Максимальная мощность боеголовок составляет ~1Кт. Хотя о нейтронных бомбах и говорят, что они оставляют материальные ценности неразрушенными, это не совсем так. В пределах радиуса нейтронного поражения (около 1 километра) ударная волна может уничтожить или сильно повредить большинство зданий.

Из особенностей конструкции стоит отметить отсутствие плутониевого запального стержня. Из-за малого количества термоядерного топлива и низкой температуры начала реакции необходимость в нем отсутствует. Весьма вероятно, что зажигание реакции происходит в центре капсулы, где в результате схождения ударной волны развивается высокое давление и температура.

Нейтронный заряд конструктивно представляет собой обычный ядерный заряд малой мощности, к которому добавлен блок, содержащий небольшое количество термоядерного топлива (смесь дейтерия и трития с большим содержанием последнего, как источника быстрых нейтронов). При подрыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции. При этом нейтроны не должны поглощаться материалами бомбы и, что особо важно, необходимо предотвратить их захват атомами делящегося материала.

Большая часть энергии взрыва при применении нейтронного оружия выделяется в результате запущенной реакции синтеза. Конструкция заряда такова, что до 80 % энергии взрыва составляет энергия потока быстрых нейтронов, и только 20 % приходится на остальные поражающие факторы (ударную волну, электромагнитный импульс, световое излучение).

Общее количество делящихся материалов для 1-кт нейтронной бомбы где-то 10 кг. 750-тонный энергетический выход синтеза означает наличие 10 граммов дейтерий-тритиевой смеси.

ХХ век вошел в историю человечества не только своими достижениями в научно-технической сфере, но и тем, что он предъявил человечеству оружие такой колоссальной мощи и разрушительной силы, что под угрозой оказалось не какое-либо одно государство, а вся наша цивилизация в целом. Одной из разновидностей такого вооружения является нейтронная бомба.

Краткая характеристика нейтронного оружия

Об этом оружии известно гораздо меньше, чем, например, о ядерном или водородном, многие разработки до сих пор окутаны государственной тайной. Доподлинно можно утверждать, что нейтронная бомба представляет особый вид тактического оружия, основная разрушающая сила которого связана со сверхбыстрым потоком нейтральных элементарных частиц. Его безусловным преимуществом по отношению к другим разновидностям ядерного оружия является намного больший радиус поражения.

Преимущества и недостатки нейтронной бомбы

С другой стороны, этот вид вооружения обладает своей спецификой. В частности, взрыв бомбы с зарядом нейтронов обладает сравнительно небольшой мощностью. Все дело в том, что если увеличить этот параметр, то нейтроны будут просто-напросто рассеиваться в воздухе, а радиус поражения окажется примерно таким же. В связи с такой небольшой мощностью и количество разрушений будет сравнительно небольшим: так, даже если будет использована самая мощная нейтронная бомба, то радиус, где будут наблюдаться сплошные разрушения, вряд ли превысит один километр.

Принцип действия нейтронной бомбы

На появление оружия с нейтронным носителем огромное влияние оказало создание атомной бомбы. Все дело в том, что на больших высотах воздействие основного поражающего фактора ядерного взрыва, коим является ударная волна, сводится к минимуму. В то же время нейтронная бомба и создаваемый ею мощный поток нейтральных элементарных частиц и на большой высоте проявляют себя более чем эффективно. Действие этого оружия основано на том, что сами нейтроны способны проникать через обшивку любого летательного аппарата и оказывать негативное влияние на системы управления. Кроме того, использование этих частиц может помочь в анализе того, какой груз - ядерный или обычный - несет на себе тот или иной самолет.

США - безусловный лидер в создании нейтронного оружия

Стоит отметить, что безусловными лидерами в этой сфере ОМП являются американцы. Исследования по использованию нейтронов в качестве оружия здесь были начаты еще в конце 1950-х гг., а уже в 1974-м первые подобные боеприпасы были приняты на вооружение. Правда, после распада Советского Союза американцы объявили о полной ликвидации данного оружия, однако по самым последним сведениям целый ряд стран, среди которых те же США, а также Россия, Китай и Израиль, имеют все необходимое, чтобы быстро развернуть производство нейтронных боеприпасов. На встречах самого разного уровня неоднократно поднимались вопросы о недопустимости создания и применения данного вида ОМП, однако нельзя исключать того, что нарастание напряженности в мире может подвигнуть ряд государств на размораживание своих разработок.

7 июля 1977 года США провели первое испытание нейтронной бомбы. Когда-то давным-давно советских школьников пугали смертоносной нейтронной бомбой, которая имелась на вооружении американской армии. Однако действительно ли эта разновидность ядерного оружия была столь смертоносной, как об этом говорили? И почему в стране, где бомба была создана, в Соединенных Штатах, ее раньше всех сняли с вооружения — в 1990-е годы?

28 ноября 2010 года скончался американский ученый Сэмюэл Коэн, которого называли "отцом нейтронного оружия". Именно он в 1958 году, работая в Ливерморской национальной лаборатории, предложил проект первой в мире нейтронной бомбы. С этого времени данный вид оружия превратился в своеобразное пугало, про которое в СССР рассказывали множество страшных историй. Однако действительно ли эта разновидность ядерного оружия была столь смертоносной, как о ней говорили?

Что же представлял собой этот вид вооружений? Напомним: нейтронная бомба — это обычный ядерный заряд малой мощности, к которому добавлен блок, содержащий небольшое количество термоядерного топлива (смесь радиоактивных изотопов водорода дейтерия и трития, с большим содержанием последнего как источника быстрых нейтронов). При его подрыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции.

В результате во внешнюю среду выделяется поток не имеющих заряда частиц, называемых нейтронами. Причем конструкция заряда такова, что до 80 процентов энергии взрыва составляет энергия потока быстрых нейтронов и только 20 процентов приходится на остальные поражающие факторы (то есть ударную волну, электромагнитный импульс, световое излучение). Поэтому, как заявляли создатели нового на тот момент оружия, подобная бомба была "гуманней" традиционной ядерной или советской водородной — при ее взрыве не бывает серьезных разрушений на большой территории и полыхающих пожаров.

Впрочем, про отсутствие разрушений они слегка преувеличили. Как показали первые испытания, все постройки в радиусе около 1 километра от эпицентра взрыва оказались полностью разрушенными. Хотя это, конечно, нельзя сравнить с тем, что натворила ядерная бомба в Хиросиме или с тем, что могла натворить отечественная водородная "царь-бомба". Да, в общем-то, данную бомбу создавали вовсе не для того, чтобы обращать в руины города и села, — она должна была уничтожать исключительно живую силу противника.

Происходило это с помощью возникающего при взрыве нейтронного излучения — потока нейтронов, которые преобразуют свою энергию в упругих и неупругих взаимодействиях с ядрами атомов. Известно, что проникающая способность нейтронов очень велика по причине отсутствия заряда и, как следствие, слабого взаимодействия с веществом, через которое они проходят. Тем не менее она все равно зависит от их энергии и состава атомов того самого вещества, которое оказалось на их пути.

Интересно, что многие тяжелые материалы, например металлы, из которых делается броневое покрытие военной техники, плохо защищают от нейтронного излучения, тогда как от гамма-излучения, получающегося при взрыве обычной ядерной бомбы, вполне могут уберечь. Так что идея нейтронной бомбы базировалась как раз на том, чтобы повысить эффективность поражения бронированных целей и людей, защищенных броней и простейшими укрытиями.

Известно, что бронетехника 1960-х годов, разработанная с учетом возможности применения на поле боя ядерного оружия, была чрезвычайно устойчива ко всем его поражающим факторам. То есть даже применение классической атомной бомбы не могло привести к сильным потерям в войсках противника, защищенного от всех ее "прелестей" мощной броней танков и других военных машин. Так что нейтронная бомба была призвана как бы устранить эту проблему.

Эксперименты показали, что взрыв маломощной, в общем-то, бомбочки (мощностью всего 1 кт ТНТ), порождал губительное нейтронное излучение, убивавшее все живое в радиусе 2,5 километра. Кроме того, нейтроны, проходя через многие защитные конструкции вроде тех же металлов, а также через грунт в районе взрыва, вызывали появление в них так называемой наведенной радиоактивности, поскольку они могут вступать в ядерные реакции с атомами, в результате которых образуются радиоактивные изотопы. Она сохранялась в технике в течение многих часов после взрыва и могла стать дополнительным источником поражения людей, ее обслуживающих.

Итак, при взрыве нейтронной бомбы шансы остаться в живых, даже сидя в танке, были весьма малы. В то же время это оружие не вызывало долговременного радиоактивного заражения местности. По утверждению ее создателей, к эпицентру взрыва можно "безопасно" приблизиться уже через двенадцать часов. Для сравнения следует сказать, что водородная бомба при взрыве заражает радиоактивными веществами территорию радиусом около 7 километров на несколько лет.

Кроме того, нейтронные заряды предполагалось использовать в системах противоракетной обороны. Для защиты от массированного ракетного удара в те годы на вооружение ставились зенитно-ракетные комплексы с ядерной боевой частью, но применение обычного ядерного оружия против высотных целей сочли недостаточно эффективным. Дело в том, что их основные поражающий факторы при охоте на ракеты противника оказывались неэффективными.

К примеру, ударная волна, в разреженном воздухе на большой высоте, а тем более в космосе вообще не возникает, световое излучение поражает боеголовки только в непосредственной близости от центра взрыва, а гамма-излучение поглощается оболочками боеголовок и не может нанести им серьезного вреда. В таких условиях превращение максимальной части энергии взрыва в нейтронное излучение могло позволить более надежно поражать ракеты противника.

Итак, начиная со второй половины 70-х годов прошлого века технология создания нейтронных зарядов была разработана в США, а с 1981 года начался выпуск соответствующих боеголовок. Однако на вооружении нейтронное оружие оставалось совсем недолго — чуть более десяти лет. Дело в том, что после появления сообщений о разработке нейтронного оружия тотчас же стали разрабатываться и методы защиты от него.

В итоге появились новые типы брони, уже способные защитить технику и ее экипаж от нейтронного излучения. Для этой цели в нее добавлялись листы с высоким содержанием бора, хорошего поглотителя нейтронов, а в саму сталь включали обедненный уран (то есть уран с пониженной долей нуклидов, 234 U и 235 U). Кроме того, состав брони подбирался таким образом, что она больше не содержала элементов, дающих под действием нейтронного облучения наведенную радиоактивность. Все эти разработки свели на нет опасность применения нейтронного оружия.

В итоге страна, впервые создавшая нейтронную бомбу, первая же и отказалась от ее использования. В 1992 году в США были списаны в утиль последние боеголовки, содержащие нейтронный заряд.