Нелинейная функция. Метод линеаризации

Применительно к функции Z = cp (X , Х 2 , ..., XJ, нелинейной относительно системы своих аргументов, решение задачи в сформулированной выше постановке может быть получено, как правило, лишь приближенно на основе метода линеаризации. Сущность метода линеаризации заключается в том, что нелинейную функцию заменяют некоторой линейной и затем по уже известным правилам находят числовые характеристики этой линейной функции, считая их приближенно равными числовым характеристикам нелинейной функции.

Сущность этого метода рассмотрим на примере функции одного случайного аргумента.

Если случайная величина Z является заданной функцией

случайного аргумента X, то ее возможные значения z связаны с возможными значениями аргумента х функцией того же вида, т. е.

(например, если Z = sin X, то z = sin X).

Разложим функцию (3.20) в ряд Тейлора в окрестности точки х = m , ограничиваясь только первыми двумя членами разложения, и будем считать, что

Значение производной функции (3.20) по аргументу х при х = т х.

Такое допущение равносильно замене заданной функции (3.19) линейной функцией

На основе теорем о математических ожиданиях и дисперсиях получим расчетные формулы для определения числовых характеристик m z ий в виде

Заметим, что в рассматриваемом случае стандартное отклонение а г следует вычислять по формуле

(Модуль производной здесь берется потому, что она

может быть и отрицательной.)

Применение метода линеаризации для нахождения числовых характеристик нелинейной функции

произвольного числа случайных аргументов приводит к расчетным формулам для определения ее математического ожидания, имеющим вид

х 2 , ..., х п) по аргументам х. и х. соответственно, вычисленные с учетом знаков в точке ш х, т^,т Хп, т. е. путем замены всех входящих в них аргументов x v х 2 , ..., х п их математическими ожиданиями.

Наряду с формулой (3.26) для определения дисперсии D ? можно использовать расчетную формулу вида

где г х х - коэффициент корреляции случайных аргументов х.

Применительно к нелинейной функции независимых (или хотя бы некоррелированных) случайных аргументов формулы (3.26) и (3.27) имеют вид

Формулы, основанные на линеаризации нелинейных функций случайных аргументов, позволяют определять их числовые характеристики лишь приближенно. Точность вычисления тем меньше, чем больше заданные функции отличаются от линейных и чем больше дисперсии аргументов. Оценить возможную ошибку в каждом конкретном случае не всегда удается.

Для уточнения результатов, полученных по данному методу, может быть использован прием, основанный на сохранении в разложении нелинейной функции не только линейных, но и некоторых последующих членов разложения (как правило, квадратичных).

Кроме того, числовые характеристики нелинейной функции случайных аргументов можно определять на основе предварительного отыскания закона ее распределения при заданном распределении системы аргументов. Однако нужно иметь в виду, что аналитическое решение такой задачи часто оказывается слишком сложным. Поэтому для нахождения числовых характеристик нелинейных функций случайных аргументов широко используется метод статистического моделирования.

Основой метода является имитация серии испытаний, в каждом из которых путем моделирования получается определенная совокупность х и, x 2i , ..., x ni значений случайных аргументов x v х 2 ,..., х п из множества, отвечающего их совместному распределению. Полученные значения с помощью заданного соотношения (3.24) преобразуются в соответствующие значения z. исследуемой функции Z. По результатам z v z 2 , ..., z., ..., z k всех к таких испытаний искомые числовые характеристики вычисляются методами математической статистики.

Пример 3.2. Определить на основе метода линеаризации математическое ожидание и стандартное отклонение случайной величины

1. По формуле (3.20) получаем

2. Используя таблицу производных элементарных функций, находим

и вычисляем значение этой производной в точке :

3. По формуле (3.23) получаем

Пример 3.3. Определить на основе метода линеаризации математическое ожидание и стандартное отклонение случайной величины

1. По формуле (3.25) получаем

2. Запишем формулу (3.27) для функции двух случайных аргументов

3. Находим частные производные от функции Z по аргументам Х 1 иХ 2:

и вычисляем их значения в точке (m Xi х2):

4. Подставив полученные данные в формулу для расчета дисперсии Z, получим D z = 1. Следовательно, и ст г = 1.

Общий метод линеаризации

В большинстве случаев можно линеаризовать нелинейные зависимости, используя метод малых отклонений или вариаций. Для рассмотрения ᴇᴦο обратимся к некоторому звену системы автоматического регулирования (рис. 2.2). Входная и выходная величины обозначены через X1 и X2, а внешнее возмущение – через F(t).

Допустим, что звено описывается некоторым нелинейным дифференциальным уравнением вида

Для составления такого уравнения нужно использовать соответствующую отрасль технических наук (например электротехнику, механику, гидравлику и т. п.), изучающую этот конкретный вид устройства.

Основанием для линеаризации служит предположение о достаточной малости отклонений всех переменных, входящих в уравнение динамики звена, так как именно на достаточно малом участке криволинейную характеристику можно заменить отрезком прямой. Отклонения переменных отсчитываются при этом от их значений в установившемся процессе или в определенном равновесном состоянии системы. Пусть, например, установившийся процесс характеризуется постоянным значением переменной Х1, которое обозначим Х10. В процессе регулирования (рис. 2.3) переменная Х1 будет иметь зна­чения где обозначает отклонение переменной X 1 от установившегося значения Х10.

Аналогичные соотношения вводятся для других переменных. Для рассматриваемого случая имеем˸ а также .

Все отклонения предполагаются достаточно малыми. Это математическое предположение не противоречит физическому смыслу задачи, так как сама идея автоматического регулирования требует, чтобы все отклонения регулируемой величины в процессе регулирования были достаточно малыми.

Установившееся состояние звена определяется значениями Х10, Х20 и F0. Тогда уравнение (2.1) должна быть записано для установившего состояния в виде

Разложим левую часть уравнения (2.1) в ряд Тейлора

где D – члены высшего порядка. Индекс 0 при частных производных означает, что после взятия производной в её выражение надо подставить установившееся значение всех переменных .

В состав членов высшего порядка в формуле (2.3) входят высшие частные производные, умноженные на квадраты, кубы и более высокие степени отклонений, а также произведения отклонений. Они будут малыми высшего порядка по сравнению с самими отклонениями, которые являются малыми первого порядка.

Уравнение (2.3) является уравнением динамики звена, так же как (2.1), но записано в другой форме. Отбросим в данном уравнении малые высшего порядка, после чего из уравнения (2.3) вычтем уравнения установившегося состояния (2.2). В результате получим следующее приближённое уравнение динамики звена в малых отклонениях˸

В это уравнение все переменные и их производные входят линейно, то есть в первой степени. Все частные производные представляют из себянекоторые постоянные коэффициенты в том случае, в случае если исследуется система с постоянными параметрами. Если же система имеет переменные параметры, то уравнение (2.4) будет иметь переменные коэффициенты. Рассмотрим только случай постоянных коэффициентов.

Общий метод линеаризации - понятие и виды. Классификация и особенности категории "Общий метод линеаризации" 2015, 2017-2018.

Зависимости

Обработка результатов косвенных измерений при нелинейной

Представление результатов измерений

Ввиду того, что каждый аргумент может иметь соответствующие доверительные границы неисключенной систематической и случайной погрешностей, то задача определения погрешности косвенного измерения в этих случаях делится на три этапа:

а) суммирование частных неисключенных систематических погрешностей аргументов;

б) суммирование частных случайных погрешностей аргументов;

в) сложение систематической и случайной составляющих погрешности.

Доверительная граница неисключенной систематической погрешности косвенного измерения при условии одинаковой доверительной вероятности частных погрешностей и их равномерного распределения внутри заданных границ определяется по формуле (без учета знака):

где θ y – доверительная граница неисключенной систематическо погрешности среднего значения X j -го аргумента. При отсутствии корреляционной связи между аргументами оценка СКО случайной погрешности косвенного измерения вычисляется по

где S x j – оценка СКО случайной погрешности результата измерения X j -го аргумента.

При нормальном распределении погрешностей косвенного измерения доверительная граница случайной составляющей погрешности вычисляется по формуле:

где t p – квантиль Стьюдента при доверительной вероятности P с эффективным числом степеней свободы k эф , определяемом при малых объемах выборки по формуле:

При больших объемах число степеней свободы находится по формуле

Доверительная граница суммарной погрешности результата косвенного

измерения определяется по правилам, изложенным выше.

Существуют два метода определения точечной оценки результата косвенного измерения и её погрешности: линеаризации и приведения.

Для косвенных измерений при нелинейных зависимостях и некоррелированных погрешностях измерений аргументов используется метод линеаризации. Метод линеаризации основан на том, что погрешность измерения значительно меньше измеряемой величины, и поэтому вблизи средних значений Xi аргументов нелинейная функциональная зависимость линеаризуется и раскладывается в ряд Тейлора (члены высокого порядка не учитываются). Линеаризуя функцию нескольких случайных аргументов (какими и являются результаты измерений и их погрешности), можно получить, как правило, достаточно простое выражение для вычисления оценок среднего

значения и среднего квадратического отклонения функции. Разложение нелинейной функции в ряд Тейлора имеет вид:

Метод линеаризации допустим, если можно пренебречь остаточным членом R . Остаточным членом


пренебрегают, если

где X S – среднее квадратическое отклонение случайных погрешностей результата измерения x i -го аргумента. Первое слагаемое правой части уравнения есть точечная оценка истинного значения косвенной величины, которая получается подстановкой в

функциональную зависимость средних арифметических X i , значений аргументов:

Второе слагаемое

есть сумма составляющих погрешности косвенного измерения, называемых частными погрешностями, а частные производные

Коэффициентами влияния.

Отклонения ΔXi должны быть взяты из полученных значений погрешностей и такими, чтобы они максимизировали выражение для остаточного члена R . Если частные погрешности косвенного измерения не зависят друг от друга, т. е. являются некоррелированными, и известны доверительные границы погрешности аргументов при одинаковой вероятности, то предельная погрешность (без учета знака) косвенного измерения вычисляется по формуле:

значения частных производных функциональной зависимости определяются при средних значениях аргументов

Этот метод, называемый максимум-минимум, дает значительно завышенное значение погрешности косвенного измерения. Относительно правильная оценка погрешности косвенного измерения, получается, по методу квадратического суммирования

В ряде случаев расчет погрешности косвенного измерения значительно упрощается при переходе к относительным погрешностям. Для этого используется прием логарифмирования и последующего дифференцирования функциональной зависимости. Когда предельная погрешность косвенного измерения, полученная по методу максимума-минимума.

Метод гармонической линеаризации (гармонического баланса ) позволяет определить условия существования и параметры возможных автоколебаний в нелинейных САУ. Автоколебания определяются предельными циклами в фазовом пространстве систем. Предельные циклы разделяют пространство (в общем случае - многомерное ) на области затухающих и расходящихся процессов. В результате расчета параметров автоколебаний можно сделать заключение о их допустимости для данной системы или о необходимости изменения параметров системы.

Метод позволяет:

Определить условия устойчивости нелинейной системы;

Найти частоту и амплитуду свободных колебаний системы;

Синтезировать корректирующие цепи, для обеспечения требуемых параметров автоколебаний;

Исследовать вынужденные колебания и оценивать качество переходных процессов в нелинейных САУ.

Условия применимости метода гармонической линеаризации.

1) При использовании метода предполагается, что линейная часть системы устойчива или нейтральна.

2) Сигнал на входе нелинейного звена близок по форме к гармоническому сигналу. Это положение требует пояснений.

На рис.1 представлены структурные схемы нелинейной САУ. Схема состоит из последовательно соединенных звеньев: нелинейного звена y=F(x) и линейно-

го, которое описывается дифференциальным уравнением

При y = F(g - x) = g - x получим уравнение движения линейной системы.

Рассмотрим свободное движение, т.е. при g(t) º 0. Тогда,

В случае, когда в системе существуют автоколебания, свободное движение системы является периодическим. Непериодическое движение с течением времени оканчивается остановкой системы к некотором конечном положении (обычно, на специально предусмотренном ограничителе).

При любой форме периодического сигнала на входе нелинейного элемента сигнал на его выходе будет содержать кроме основной частоты высшие гармоники. Предположение о том, что сигнал на входе нелинейной части системы можно считать гармоническим, т.е., что

x(t)@ a×sin(wt),

где w=1/T, T - период свободных колебаний системы, равносильно предположению о том, что линейная часть системы эффективно фильтрует высшие гармоники сигнала y(t) = F(x (t)).

В общем случае при действии на входе нелинейного элемента гармонического сигнала x(t) сигнал на выходе может быть преобразован по Фурье:

Коэффициенты ряда Фурье

Для упрощения выкладок положим C 0 =0, т.е., что функция F(x) симметрична относительно начала координат. Такое ограничение не обязательно и сделано анализа. Появление коэффициентов C k ¹ 0 означает, что, в общем случае нелинейное преобразование сигнала сопровождается и фазовыми сдвигами преобразуемого сигнала. В частности, это имеет место в нелинейностях с неоднозначными характеристиками (с различного рода гистерезисными петлями), причем как запаздывание так и, в некоторых случаях, опережение по фазе .



Предположение об эффективной фильтрации означает, что амплитуды высших гармоник на выходе линейной части системы малы, то есть

Выполнению этого условия способствует то, что во многих случаях амплитуды гармоник уже непосредственно на выходе нелинейности оказываются существенно меньше амплитуды первой гармоники. Например, на выходе идеального реле при гармоническом сигнале на входе

y(t)=F(с×sin(wt))=a×sign(sin(wt))

четные гармоники отсутствуют, а амплитуда третьей гармоники в три раза меньше амплитуды первой гармоники

Сделаем оценку степени подавления высших гармоник сигнала в линейной части САУ. Для этого сделаем ряд предположений.

1) Частота свободных колебаний САУ приблизительно равна частоте среза ее линейной части. Отметим, что частота свободных колебаний нелинейной САУ может существенно отличаться от частоты свободных колебаний линейной системы так, что это допущение не всегда корректно .

2) Показатель колебательности САУ примем равным M=1.1.

3) ЛАХ в окрестностях частоты среза (w с) имеет наклон -20 дБ/дек. Границы этого участка ЛАХ связаны с показателем колебательности соотношениями

4) Частота w max является сопрягающей с участком ЛФХ, так что при w > w max наклон ЛАХ не менее минус 40 дБ/дек.

5) Нелинейность - идеальное реле с характеристикой y = sign(x) так, что на ее выходе нелинейности будут присутствовать только нечетные гармоники.

Частоты третьей гармоники w 3 = 3w c , пятой w 5 = 5w с,

lgw 3 = 0.48+lgw c ,

lgw 5 = 0.7+lgw c .

Частота w max = 1.91w с, lgw max = 0.28+lgw c . Сопрягающая частота отстоит от частоты среза на 0.28 декады.

Уменьшение амплитуд высших гармоник сигнала при их прохождении через линейную часть системы составит для третьей гармоники

L 3 = -0.28×20-(0.48-0.28)×40 = -13.6 дБ, то есть в 4.8 раза,

для пятой - L 5 = -0.28×20-(0.7-0.28)×40 = -22.4 дБ, то есть в 13 раз.

Следовательно, сигнал на выходе линейной части окажется близким к гармоническому

Это эквивалентно предположению, что система является низкочастотным фильтром.

Нв себя, L(0)=0, и дифференцируем по Фреше. Одним из классич. методов решения (1), связанным с линеаризацией (1), является итерационный метод Ньютона - Канторовича, в к-ром при известном приближении и n новое приближение и n+ 1 определяется как решение линейного уравнения

с итерационным параметром подлежащим выбору. При реализации упомянутых методов следует учитывать и приближенность решения систем (напр., как следствие применения вспомогательных итерационных методов) (см., напр., , , ). При рассмотрении нелинейных задач на собственные значения (задач нахождения точек бифуркации), напр. вида

идея линеаризации (5), сводящая исследование задачи (5) к исследованию линейной задачи на собственные значения

оказалась весьма плодотворной (см. - ). Часто используется та или иная линеаризация и в сеточных методах решения нестационарных нелинейных задач (см., напр., - ), проводимая за счет известных решений в моменты времени до t n и дающая линейные уравнения для решения в следующий дискретный (t - шаг по времени). Лит. : Красносельский М. А. [и др.], Приближенное решение операторных уравнений, т. 1, М., 1969 ; К о л л а т ц Л., Функциональный анализ и , пер. с нем., М., 1969; О р т е г а Д ж., Р е й н б о л д т В., Итерационные методы решения нелинейных систем уравнений со многими неизвестными, пер. с англ., М., 1975; Б е л л м а н Р., К а л а б а Р., Квазилинеаризация и нелинейные краевые задачи, пер. с англ., М., 1968; П о б е д р я Б. Б., в кн.: Упругость и неупругость, в. 3, М., 1973, с. 95-173; О д е н Д ж., Конечные элементы в нелинейной механике сплошных сред, пер. с англ., М., 1976; Зенкевич О., Метод конечных элементов в технике, пер. с англ., М., 1975; С в и р с к и й И. В., Методы типа Бубнова - Галеркияа и последовательных приближений, М., 1968; М и х л и н С. Г., Численная реализация вариационных методов, М., 1966; Futik S., Kratochvil A., Necas I., "Acta Univ. Corolinae. Math, et Phys.", 1974, v. 15, № 1-2, p. 31-33; Амосов А. А., Бахвалов Н. С., О с и-п и к Ю. И.; "Ж. вычисл. матем. и матем. физики", 1980, т. 20, № 1, с. 104-11; Е i s е n s t a t S. С., S с h u l t z М. Н., S h е r m a n А. Н., "Lect. Notes Math.", 1974, № 430, p. 131 - 53; Дьяконов Е. Г., в кн.: Численные методы механики сплошной среды, т. 7, № 5, М., 1976, с. 14-78; В о р о в и ч И. И., в кн.: Проблемы гидродинамики и механики сплошной среды. К шестидесятилетию акад. Л. И. Седова, М., 1969; Бергер М. С., в кн.: Теория ветвления и нелинейные задачи на собственные значения, пер. с англ., М., 1974, с. 71-128; Скрыпник И. В., Нелинейные эллиптические уравнения высшего порядка, К., 1973; Ладыженская О. А., Математические вопросы динамики вязкой несжимаемой жидкости, 2 изд., М., 1970; Дьяконов Е. Г., Разностные методы решения краевых задач, в. 2 - Нестациопарные задачи, М., 1972; Р и в к и н д В. Я., У р а л ь ц е в а Н. Н., в кн.: Проблемы математического анализа, в. 3, Л., 1972, с. 69-111; Fairweather G., Finite element Galerkin methods for differential equations, N. Y., 1978. ; L u s k i n M., "SIAM J. Numer. Analysis", 1979, v. 16, № 2, p. 284-99.

Е. Г. Дьяконов.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ЛИНЕАРИЗАЦИИ МЕТОДЫ" в других словарях:

    функциональная группа - 2.1.8. функциональная группа: Группа, состоящая из нескольких функциональных блоков, электрически взаимосвязанных между собой для выполнения заданных функций. Источник …

    Численные методы решения методы, заменяющие решение краевой задачи решением дискретной задачи (см. Линейная краевая задача;численные методы решения и Нелинейное уравнение;численные методы решения). Во многих случаях, особенно при рассмотрении… … Математическая энциклопедия

    Численные методы раздел вычислительной математики, посвященный методам отыскания экстремальных значений функционалов. Численные методы В. и. принято разделять на два больших класса: непрямые и прямые методы. Непрямые методы основаны на… … Математическая энциклопедия

    У этого термина существуют и другие значения, см. Наследование. Диаграмма наследования классов в виде ромба. Ромбовидное наследование (… Википедия

    Прогноз - (Forecast) Определение прогноза, задачи и принципы прогнозирования Определение прогноза, задачи и принципы прогнозирования, методы прогнозирования Содержание Содержание Определение Основные понятия прогностики Задачи и принципы прогнозирования… … Энциклопедия инвестора

    Приближенные методы решения методы получения аналитич. выражений (формул), либо численных значений, приближающих с той или иной степенью точности искомое частное решение дифференциального уравнения (д. у.) или системы для одного или нескольких… … Математическая энциклопедия

    Численные методы решения итерационные методы решения нелинейных уравнений. Под нелинейными уравнениями понимаются (см. ) алгебраические и трансцендентные уравнения вида где х действительное число, нелинейная функция, а под системой… … Математическая энциклопедия

    Ур ния, не обладающие свойством линейности; применяются в физике как матем. модели нелинейных явлений в разл. сплошных средах. Н. у. м. ф. важная часть матем. аппарата, используемого в фундам. физ. теориях: теории тяготения и квантовой теории… … Физическая энциклопедия

    - (от лат. linearis линейный), один из методов приближённого представления замкнутых нелинейных систем, при котором исследование нелинейной системы заменяется анализом линейной системы, в некотором смысле эквивалентной исходной. Методы… … Википедия

    статическая - 3.7 статическая нагрузка: Внешнее воздействие, которое не вызывает ускорений деформируемых масс и сил инерции. Источник … Словарь-справочник терминов нормативно-технической документации

Книги

  • Прогнозирование надёжности технологических процессов, инструмента и машин в обработке металлов давлением , Л. Г. Степанский. Пособие соответствует программе курса "Теория автоматического управления" . Рассмотрены математические модели и методы анализа устойчивости дискретных систем. Изложены методы гармонической и…