Основные параметры состояния влажного воздуха. Основные параметры влажного воздуха


Атмосферный воздух практически всегда является влажным за счёт испарения в атмосферу воды с открытых водоёмов, а также вследствие горения органических топлив с образованием воды и т.п. Нагретый атмосферный воздух очень часто используется для сушки различных материалов в сушильных камерах и в других технологических процессах. Относительное содержание водяных паров в воздухе также является одной из важнейших составляющих климатического комфорта в жилых помещениях и в помещениях для длительного хранения продовольственных товаров и промышленных изделий. Эти обстоятельства определяют важность изучения свойств влажного воздуха и расчёта процессов сушки.

Здесь мы рассмотрим термодинамическую теорию влажного воздуха в основном с целью научиться рассчитывать процесс сушки влажного материала, т.е. научиться рассчитывать расход воздуха, который бы обеспечивал необходимую скорость сушки материала при заданных параметрах сушильной установки, а также с целью рассмотреть вопросы анализа и расчёта установок климатизации и кондиционирования воздуха.

Водяной пар, который присутствует в воздухе, может находиться либо в перегретом состоянии, либо в насыщенном. При определённых условиях водяной пар в воздухе может конденсироваться; тогда влага выпадает в виде тумана (облака), либо происходит запотевание поверхности – выпадение росы. Тем не менее, несмотря на фазовые переходы, находящийся во влажном воздухе водяной пар может с большой точностью рассматриваться как идеальный газ вплоть до состояния сухого насыщенного. В самом деле, например, при температуре t = 50 о С насыщенный водяной пар имеет давление p s = 12300 Па и удельный объём . Имея в виду, что газовая постоянная для водяного пара

т.е. при этих параметрах даже насыщенный водяной пар с ошибкой не более 0.6% ведёт себя как идеальный газ.

Таким образом, мы будем рассматривать влажный воздух как смесь идеальных газов с той лишь оговоркой, что в состояниях, близких к насыщению параметры водяного пара будут определяться по таблицам или диаграммам.



Введём некоторые понятия, характеризующие состояние влажного воздуха. Пусть в объёме пространства 1 м 3 находится влажный воздух в равновесном состоянии. Тогда количество сухого воздуха в этом объёме будет по определению плотностью сухого воздуха ρ св (кг/м 3), а количество водяного пара соответственно ρ вп (кг/м 3). Это количество водяного пара называется абсолютной влажностью влажного воздуха. Плотность влажного воздуха будет, очевидно,

При этом следует иметь в виду, что плотности сухого воздуха и водяного пара должны вычисляться при соответствующих парциальных давлениях, таким образом, что

т.е. мы считаем справедливым закон Дальтона для влажного воздуха.

Если температура важного воздуха равна t , то

Часто вместо плотности водяных паров , т.е. вместо абсолютной влажности, влажный воздух характеризуют так называемым влагосодержанием d , которое определяют как количество водяных паров, приходящееся на 1 кг сухого воздуха. Для определения влагосодержания d выделим во влажном воздухе некоторый объём V 1 , такой чтобы масса сухого воздуха в нём составляла 1 кг, т.е. размерность V 1 в нашем случае есть м 3 /кг св. Тогда количество влаги в этом объёме будет d кг вп /кг св. Очевидно, что влагосодержание d связано с абсолютной влажностью ρ вп. В самом деле, масса влажного воздуха в объёме V 1 равна

Но поскольку объём V 1 мы выбрали так, чтобы в нём содержался 1 кг сухого воздуха, то очевидно . Второе же слагаемое есть по определению влагосодержание d , т.е.



Считая сухой воздух и водяной пар идеальными газами, получим

С учётом находим связь влагосодержания с парциальным давлением водяных паров в воздухе

Подставляя сюда численные значения , имеем окончательно

Поскольку водяной пар всё-таки не является идеальным газом в том смысле, что его парциальное давление и температура значительно ниже критических, влажный воздух не может содержать произвольное количество влаги в виде пара. Проиллюстрируем это на диаграмме p–v водяного пара (см. рис. 1).

Пусть начальное состояние водяных паров во влажном воздухе изображается точкой С. Если теперь при постоянной температуре t С добавлять во влажный воздух влагу в виде пара, например, путём испарения воды с открытой поверхности, то точка, изображающая состояние водяного пара, будет перемещаться вдоль изотермы t С =const влево. Плотность водяного пара во влажном воздухе, т.е. его абсолютная влажность, будет возрастать. Это увеличение абсолютной влажности будет продолжаться до тех пор, пока водяной пар при заданной температуре t С не станет сухим насыщенным (состояние S). Дальнейшее увеличение абсолютной влажности при заданной температуре невозможно, так как водяной пар начнёт конденсироваться. Таким образом, максимальное значение абсолютной влажности при заданной температуре есть плотность сухого насыщенного пара при этой температуре, т.е.

Отношение абсолютной влажности при заданной температуре и максимально возможной абсолютной влажности при той же температуре называется относительной влажностью влажного воздуха, т.е. по определению имеем

Возможен также другой вариант конденсации паров во влажном воздухе, а именно изобарное охлаждение влажного воздуха. Тогда остаётся постоянным и парциальное давление водяного пара в воздухе. Точка C на диаграмме p–v будет смещаться влево вдоль изобары вплоть до точки R. Далее начнётся выпадение влаги. Такая ситуация очень часто осуществляется летом в течение ночи при охлаждении воздуха, когда на холодных поверхностях выпадает роса, а в воздухе образуется туман. По этой причине температура в точке R, при которой начинает выпадать роса, называется точкой росы и обозначается t R . Она определяется как температура насыщения, соответствующая заданному парциальному давлению пара

Энтальпия влажного воздуха в расчёте на 1 кг сухого воздуха вычисляется суммированием

при этом учитывается, что энтальпии сухого воздуха и водяного пара отсчитываются от температуры 0 о С (точнее от температуры тройной точки воды, равной 0.01 о С).

Как известно, сухой воздух (СВ) состоит на 78% из азота, на 21% из кислорода и около 1% составляют диоксид углерода, инертные и другие газы. Если в воздухе имеются , то такой воздух называется влажным воздухом (ВВ). Учитывая, что при вентиляции помещений состав сухой части воздуха практически не изменяется, а может изменяться только количество влаги, в вентиляции принято рассматривать ВВ как бинарную смесь, состоящую только из двух компонентов: СВ и водяные пары (ВП). Хотя к этой смеси применимы все газовые законы, однако при вентиляции с достаточной точностью можно считать, что воздух практически все время находится под атмосферным давлении, так как давления вентиляторов достаточно малы по сравнению с барометрическим давлением . Нормальное атмосферное давление составляет 101,3 кПа, а давления, развиваемые вентиляторами, составляют обычно не более 2 кПа. Поэтому нагрев и воздуха в вентиляции происходят при постоянном давлении.

Из термодинамических параметров ВВ, которыми оперируют в курсе вентиляции, можно выделить следующие :

  1. плотность;
  2. теплоемкость;
  3. температура;
  4. влагосодержание;
  5. парциальное давление водяного пара;
  6. относительная влажность;
  7. температура точки росы;
  8. энтальпия (теплосодержание);
  9. температура по мокрому термометру.
Термодинамические параметры определяют состояние ВВ и определенным образом связаны друг с другом. Особыми, не термодинамическим параметром, являются подвижность, то есть скорость воздуха, и концентрация вещества (кроме влаги). Они никак не связаны с остальными термодинамическими параметрами и могут быть любыми независимо от них.

Под воздействием различных факторов может изменять свои параметры. Если воздух, заключенный в некотором объеме (например, помещении), находится в контакте с горячими поверхностями, он нагревается , то есть повышается его температура. При этом нагреву подвергаются непосредственно те слои, которые граничат с горячими поверхностями. Из-за нагрева изменяется , и это приводит к возникновению конвективных течений : происходит процесс турбулентного обмена. За счет наличия турбулентного перемешивания воздуха в процессе вихреобразования воспринятая пограничными слоями постепенно передается более удаленным слоям, в результате чего весь объем воздуха както повышает свою температуру.

Из рассмотренного примера ясно, что слои близкие к горячим поверхностям, будут иметь температуру более высокую, чем удаленные. Иначе говоря, температура по объему не одинакова (и иногда различается весьма значительно). Поэтому температура, как параметр воздуха, в каждой точке будет иметь свое индивидуальное, локальное значение. Однако характер распределения локальных температур по объему помещения предсказать крайне трудно, поэтому в большинстве ситуаций приходится говорить о неком среднем значении того или иного параметра воздуха. Среднее значение температуры выводится из предположения, что воспринятое тепло окажется равномерно распределено по объему воздуха, и температура воздуха в каждой точке пространства будет одинакова.

Более менее изучен вопрос о распределении температуры по высоте помещения, однако даже в этом вопросе картина распределения может сильно изменяться под действием отдельных факторов : струйных течений в помещении, наличия экранирующих поверхностей строительных конструкций и оборудования, температуры и размеров тепловых источников.

Лекция СУШКА.

Сушкой называется процесс удаления влаги из твердых тел путем ее испарения и отвода образующихся паров.

Часто тепловой сушке предшествуют механические способы удаления влаги (отжим, отстаивание, фильтрование, центрифугирование).

Во всех случаях при сушке в виде паров удаляется легколетучий компонент (вода, органический растворитель, и.т.д.)

По физической сущности сушка является процессом совместного тепло, массопереноса и сводится к перемещению влаги под воздействием теплоты из глубины высушиваемого материала к его поверхности и последующему ее испарению. В процессе сушки влажное тело стремится к состоянию равновесия с окружающей средой, поэтому его температура и влагосодержание в общем случае является функцией времени и координат.

В практике используется понятие влажность v, которая определяется как:

(5.2)

Если то тогда

По способу подвода теплоты различают:

Конвективную сушку, проводимую путем непосредственного контакта материала и сушильного агента;

Контактную (кондуктивную) сушку, тепло передается к материалу через разделяющую их стенку;

Радиационную сушку – путем передачи теплоты инфракрасным излучением;

Сублимационную сушку, при которой влага удаляется из материала в замороженном состоянии (обычно в вакууме);

Диэлектрическую сушку, при которой материал высушивается в поле токов высокой частоты.

При любом способе сушки материал находится в контакте с влажным воздухом. В большинстве случаев из материала удаляется вода, поэтому обычно рассматривают систему сухой воздух – пары воды.

Параметры влажного воздуха.

Смесь сухого воздуха с парами воды является влажным воздухом. Параметры влажного воздуха:

Относительная и абсолютная влажность;

Теплоемкость и энтальпия.

Влажный воздух, при небольших P и Т, можно считать бинарной смесью идеальных газов – сухого воздуха и водяного пара. Тогда по закону Дальтона можно записать:

(5.3)

где P – давление парогазовой смеси, p c г – парциальное давление сухого воздуха, – парциальное давление водяного пара.

Свободный или перегретый пар – при данных Т и Р он не конденсируется. Максимально возможное содержание паров в газе, выше которого наблюдается конденсация, соответствует условиям насыщения при определенной Т и парциальным давлении .

Различают абсолютную, относительную влажности и влагосодержание воздуха.

Абсолютная влажность – это масса водяного пара в единице объема влажного воздуха (кг/м 3) . Понятие абсолютной влажности совпадает с понятием плотности пара при температуре Т и парциальном давлении .

Относительная влажность - это отношение количества паров воды в воздухе к максимально возможному, при данных условиях, или отношение плотности пара при данных условиях к плотности насыщенного пара при тех же условиях:

По уравнению состояния идеального газа Менделеева – Клайперона для пара в свободном и насыщенном состоянии имеем:

и (5.5)

Здесь М п – масса одного моля пара в кг, R – газовая постоянная.

С учетом (5.5) уравнение (5.4) принимает вид:

Относительная влажность определяет влагоемкость сушильного агента (воздуха).

Здесь G П – масса (массовый расход) пара, L – масса (массовый расход) абсолютно сухого газа. Выразим величины G П и L через уравнение состояния идеального газа:

,

Тогда соотношение (5.7) преобразуется к виду:

(5.8)

Масса 1 моля сухого воздуха в кг.

Вводя и учитывая получим:

(5.9)

Для системы воздух – водяной пар , . Тогда имеем:

(5.10)

Итак, установлена связь между влагосодержанием х и относительной влажностью φ воздуха.

Удельная теплоемкость влажного газа принимается аддитивной величиной теплоемкостей сухого газа и пара.

Удельная теплоемкость влажного газа c , отнесенная к 1 кг сухого газа (воздуха):

(5.11)

где удельная теплоемкость сухого газа, удельная теплоемкость пара.

Удельная теплоемкость , отнесенная к 1 кг парогазовой смеси:

(5.12)

При расчетах обычно используют с .

Удельная энтальпия влажного воздуха Н относится к 1 кг абсолютно сухого воздуха и определяется при данной температуре воздуха Т как сумма энтальпий абсолютно сухого воздуха и водяного пара :

(5.13)

Удельную энтальпию перегретого пара определяют по следующему выражению.

В атмосферном воздухе, а следовательно, и в воздухе помещений всегда содержится определенное количество водяного пара.

Количество влаги в граммах, содержащееся в 1 м 3 воздуха, называется объемной концентрацией пара или абсолютной влажностью f в г/м 3 . Водяной пар, входящий в состав паровоздушной смеси занимает тот же объем v, что и сама смесь; температура Т пара и смеси одинакова.

Энергетический уровень молекул водяного пара, содержащихся во влажном воздухе, выражается парциальным давлением е


где М е - масса водяного пара, кг; μ м - молекулярный вес, кг/моль: R - универсальная газовая постоянная, кГ-м/град·моль, или мм рт. ст·м 3 /град·моль.

Физическая размерность парциального давления зависит от того, в каких единицах выражены давление и объем, входящие в универсальную газовую постоянную.

Если давление измеряется в кГ/м 2 , то парциальное давление имеет такую же размерность; при измерении давления в мм рт. ст. парциальное давление выражается в этих же единицах.

В строительной теплофизике для парциального давления водяного пара обычно принимается размерность, выраженная в мм рт. ст.

Величина парциального давления и разность этих давлений в смежных сечениях рассматриваемой материальной системы используются для расчетов диффузии водяного пара внутри ограждающих конструкций. Величина парциального давления дает представление о количестве и кинетической энергии водяного пара, содержащегося в воздухе; количество это выражается в единицах, измеряющих давление или энергию пара.

Сумма парциальных давлений пара и воздуха равна полному давлению паровоздушной смеси


Парциальное давление водяного пара, как и абсолютная влажность паровоздушной смеси, не может возрастать беспредельно в атмосферном воздухе с определенной температурой и барометрическим давлением.

Предельное значение парциального давления Е в мм рт. ст. соответствует полному насыщению воздуха водяным паром F макс в г/м 3 и возникновению его конденсации, происходящей обычно на материальных поверхностях, граничащих с влажным воздухом или на поверхности пылинок и аэрозолей, содержащихся в нем во взвешенном состоянии.

Конденсация на поверхности ограждающих конструкций обычно вызывает нежелательное увлажнение этих конструкций; конденсация на поверхности аэрозолей, взвешенных во влажном воздухе, связана с легким образованием туманов в атмосфере, загрязненной промышленными выбросами, копотью и пылью. Абсолютные значения величин Е в мм рт. ст. и F в г/м 3 близки между собой при обычных температурах воздуха отапливаемых помещений, а при t=16° С они равны друг другу.

С повышением температуры воздуха величины Е и F растут. При постепенном понижении температуры влажного воздуха величины е и f, имевшие место в ненасыщенном воздухе с начальной более высокой температурой, достигают предельных максимальных значений, поскольку эти значения уменьшаются с понижением температуры. Температура, при которой воздух достигает полного насыщения, называется температурой точки росы или просто точкой росы.

Значения величин Е для влажного воздуха с различной температурой (при барометрическом давлении 755 мм рт. ст.) указаны в


При отрицательных температурах следует иметь в виду, что давление насыщенного водяного пара над льдом меньше давления над переохлажденной водой. Это видно из рис. VI.3, на котором представлена зависимость парциального давления насыщенного водяного пара Е от температуры.

В точке О, которая называется тройной, пересекаются границы трех фаз: льда, воды и пара. Если продолжить пунктиром кривую линию, отделяющую жидкую фазу от газообразной (воду от пара), она пройдет выше границы твердой и газообразной фаз (пара и льда), что свидетельствует о более высоких значениях парциальных давлений насыщенного водяного пара над переохлажденной водой.

Степень насыщения влажного воздуха водяным паром выражается относительным парциальным давлением или относительной влажностью.

Относительная влажность ср является отношением парциального давления водяного пара е в рассматриваемой воздушной среде к максимальному значению этого давления Е, возможному при данной температуре. В физическом отношении величина φ безразмерна и ее значения могут изменяться от 0 до 1; в строительной практике величину относительной влажности обычно выражают в процентах:


Относительная влажность имеет большое значение как в гигиеническом, так и в техническом отношении. Величина φ связана с интенсивностью испарения влаги, в частности, с поверхности кожи человека. Нормальной для постоянного пребывания человека считается относительная влажность в пределах от 30 до 60%. Величина φ характеризует также процесс сорбции, т. е. поглощения влаги пористыми гигроскопическими материалами, находящимися в контакте с воздушной влажной средой.

Наконец, величина φ определяет процесс конденсации влаги как на пылинках и других взвешенных частицах, содержащихся в воздушной среде, так и на поверхности ограждающих конструкций. Если воздух с определенным влагосодержанием подвергнуть нагреванию, то относительная влажность нагретого воздуха понизится, поскольку величина парциального давления водяного пара е останется постоянной, а максимальное его значение Е увеличится с повышением температуры, см. формулу (VI.3).

Наоборот, при охлаждении воздуха с неизменным влагосодержанием, его относительная влажность будет увеличиваться из-за уменьшения величины Е.

При некоторой температуре максимальное значение парциального давления Е окажется равным величине е, имеющейся в воздухе, а относительная влажность φ - равной 100%, что соответствуе точке росы. При дальнейшем понижении температуры парциальное давление остается постоянным (максимальным), а излишнее количество влаги конденсируется, т. е. переходит в жидкое состояние. Таким образом, процессы нагревания и охлаждения воздуха связаны с изменениями его температуры, относительной влажности, а следовательно, и первоначального объема.


За основные величины при резких изменениях температуры влажного воздуха (например, при расчетах вентиляционных процессов) часто принимают его влагосодержание и теплосодержание (энтальпию).


где 18 и 29 - молекулярные веса водяного пара и сухого воздуха Р=Р е +Р в - общее давление влажного воздуха.

При постоянном общем давлении влажного воздуха (например, Р=1) его влагосодержание определяется только парциальным давлением водяного пара



Плотность влажного воздуха уменьшается с увеличением парциального давления по линейному закону.

Существенное различие молекулярных весов водяного пара и сухого воздуха приводит к повышению абсолютной влажности и парциального давления в наиболее теплых зонах (обычно в верхней зоне) помещений, в соответствии с закономерностями, .


где с р - удельная теплоемкость влажного воздуха, равная 0,24+0,47d (0,24 - теплоемкость сухого воздуха; 0,47 - теплоемкость водяного пара); t - температура,°С; 595 - удельная теплота испарения при 0°С, ккал/кг; d - влагосодержание влажного воздуха.

Изменение всех параметров влажного воздуха (например, при колебаниях его температуры) можно установить по I - d диаграмме, основными величинами которой являются теплосодержание I и влагосодержание d воздуха при среднем значении барометрического давления.

На I - d диаграмме теплосодержание I отложено по оси ординат, а проекции влагосодержания d - по оси абсцисс; на эту ось спроектированы истинные значения влагосодержания с наклонной оси, расположенной под углом в 135° к оси ординат. Тупой угол принят в целях более четкого построения на диаграмме кривых влажности воздуха (рис. VI.4).

Линии одинакового теплосодержания (I=const) располагаются на диаграмме наклонно, а одинакового влагосодержания (d = const) - вертикально.

Кривая полного насыщения воздуха влагой φ=1 делит диаграмму на верхнюю часть, в которой воздух неполностью насыщен, и нижнюю, где воздух полностью насыщен влагой и могут происходить процессы конденсации.

В нижней части диаграммы расположена построенная в обычной сетке координат по формуле (VI.4) линия p e =f(d) роста парциальных давлений водяного пара, выражаемых в мм рт. ст.

Диаграммы теплосодержания и влагосодержания широко используются в отопительно-вентиляционной практике при расчете процессов нагревания и охлаждения воздуха, а также в сушильной технике. С помощью I - d диаграмм можно установить все необходимые параметры влажного воздуха (теплосодержание, влагосодержание, температуру, точку росы, относительную влажность, парциальное давление), если известны только два из этих параметров.

Примечания

1. Это давление иногда называют упругостью водяного пара.

Абсолютной влажностью воздуха ρ п, кг/м, называют массу водяного пара, содержащегося в 1 м 3 влажного воздуха, т. е. абсолютная влажность воздуха численно равна плотности пара при данном парциальном давлении Р п и температуре смеси t.

Влагосодержанием называют отношение массы пара к массе сухого воздуха, содержащегося в том же объеме влажного газа. Из-за малых значений массы пара во влажном воздухе влагосодержание выражают в граммах на 1 кг сухого воздуха и обозначают через d. Относительной влажностью φ называют степень насыщения газа паром и выражают отношением абсолютной влажности ρ п к максимально возможной при тех же давлениях и температуре ρ н.

Применительно к произвольному объему влажного воздуха V, в котором содержится D п кг, водяного пара и L кг, сухого воздуха при барометрическом давлении Р б и абсолютной температуре Т можно записать:

(5.2)

(5.3)

(5.4)

Если влажный воздух рассматривать как смесь идеальных газов, для которых справедлив закон Дальтона, Р б = Р в + Р п, и уравнение Клапейрона, PV=G∙R∙T, то для ненасыщенного воздуха:

(5.5)

для насыщенного воздуха:

(5.6)

где D п, D н - масса пара в ненасыщенном и насыщенном состояниях воздуха;
R п - газовая постоянная пара.

Откуда следует:

(5.7)

Из уравнений состояния, записанного для воздуха и пара, получают:

(5.9)

Соотношение газовых постоянных воздуха и пара составляет 0,622, тогда:

Поскольку в процессах теплообмена с участием влажного воздуха масса сухой его части остается неизменной, то при теплотехнических расчетах удобно пользоваться энтальпией влажного воздуха Н, отнесенной к массе сухого воздуха:

где С в - средняя удельная теплоемкость сухого воздуха в интервале температур 0÷100 о С, (С в = 1,005кДж/кг∙К); С п - средняя удельная теплоемкость водяного пара (С п =1,807 кДж/кг∙К).

Изображение изменения состояния влажного газа в промышленных установках приведено на Н-d-диаграмме (рис. 5.3).

Н-d-диаграмма - это графическое изображение при выбранном барометрическом давлении основных параметров воздуха (H, d, t, φ, Р п). Для удобства практического использования Н-d-диаграммы применяют косоугольную систему координат, в которой линии Н = const расположены под углом в = 135 о к вертикали.

Рисунок 5.3 - Построение линий t = const, Р п и φ = 100 % в H-d-диаграмме

Точка а соответствует Н = 0. От точки а вниз откладывают в принятом масштабе вверх положительное значение энтальпии, вниз - отрицательное, соответствующее отрицательным значениям температур. Для построения линии t=const используют уравнение Н =1,0t + 0,001d(2493+1,97t). Угол α между изотермой t = 0 и изоэнтальпой Н = 0 определяют из уравнения:

Отсюда α≈45°, а изотерма t = 0 о С представляет собой горизонтальную линию.

При t > 0 каждую изотерму строят по двум точкам (изотерму t 1 по точкам б и в ). С ростом температуры составляющая энтальпии увеличивается, что приводит к нарушению параллельности изотерм.

Для построения линии φ = const наносят в определенном масштабе линию парциальных давлений пара в зависимости от влагосодержания. Р п зависит от барометрического давления, поэтому диаграмму строят для Р б = const.

Линию парциального давления строят по уравнению:

(5.11)

Задаваясь значениями d 1 , d 2 , и определяя Р п1 Р п2 находят точки г, д..., соединяя которые, получают линию парциального давления водяного пара.

Построение линий φ = const начинают с линии φ =1 (Р п = P s). Используя термодинамические таблицы водяного пара, находят для нескольких произвольных температур t 1 , t 2 ... соответствующие значения P s 1 , P s 2 ...Точки пересечения изотерм t 1 , t 2 ... с линиями d = const, соответствующими P s 1 , P s 2 ..., определяют линию насыщения φ = 1. Область диаграммы, лежащая выше кривой φ = 1, характеризует ненасыщенный воздух; область диаграммы ниже φ = 1 характеризует воздух, находящийся в насыщенном состоянии. Изотермы в области ниже линии φ = 1 (в области тумана), претерпевают излом и имеют направление, совпадающее с Н = const.

Задаваясь различной относительной влажностью и вычисляя при этом P п =φP s , строят линии φ = const аналогично построению линии φ = 1.

При t = 99,4 о С, что соответствует температуре кипения воды при атмосферном давлении, кривые φ = const претерпевают излом, поскольку при t≥99,4 о С P п max = P б. Если , то изотермы отклоняются влево от вертикали, а если , линии φ = const будут вертикальны.

При нагревании влажного воздуха в рекуперативном ТА увеличивается его температура, энтальпия, уменьшается относительная влажность. Соотношение масс влаги и сухого воздуха при этом остается неизменным (d = const) - процесс 1-2 (рис. 5.4 а).

В процессе охлаждения воздуха в рекуперативном ТА температура и энтальпия понижаются, относительная влажность повышается, а влагосодержание d остается неизменным (процесс 1-3). При дальнейшем охлаждении воздух достигнет полного насыщения, φ=1, точка 4. Температура t 4 называется температурой точки росы. При снижении температуры от t 4 до t 5 конденсируются (частично) водяные пары, образуется туман, снижается влагосодержание. При этом состояние воздуха будет соответствовать насыщению при данной температуре, т. е. процесс будет идти по линии φ = 1. Из воздуха удаляется капельная влага d 1 - d 5 .

Рисунок 5.4 - Основные процессы изменения состояния воздуха в H-d- диаграмме

При смешении воздуха двух состояний энтальпия смеси Н см:

Кратность смешения к = L 2 /L 1

а энтальпия
(5.13)

В H-d-диаграмме точка смеси лежит на прямой, соединяющей точки 1 и 2 при k → ~ H см = H 2 , при к → 0, H см → H 1 . Возможен случай, когда состояние смеси окажется в области пересыщенного состояния воздуха. В этом случае образуется туман. Точка смеси выносится по линии H = const на линию φ = 100 %, часть капельной влаги ∆d выпадает (рис. 5.4 б).