Понятие о волновой функции. Волновая функция и ее статистический смысл

Исходя из представления о наличии у электрона волновых свойств. Шредингер в 1925 г. предположил, что состояние движущегося в атоме электрона должно описываться известным в физике уравнением стоячей электромагнитной волны. Подставив в это уравнение вместо длины волны ее значение из уравнения де Бройля , он получил новое уравнение, связывающее энергию электрона с пространственными координатами и так называемой волновой функцией , соответствующей в этом уравнении амплитуде трехмерного волнового процесса.

Особенно важное значение для характеристики состояния электрона имеет волновая функция . Подобно амплитуде любого волнового процесса, она может принимать как положительные, так и отрицательные значения. Однако величина всегда положительна. При этом она обладает замечательным свойством: чем больше значение в данной области пространства, тем выше вероятность того, что электрон проявит здесь свое действие, т. е. что его существование будет обнаружено в каком-либо физическом процессе.

Более точным будет следующее утверждение: вероятность обнаружения электрона в некотором малом объеме выражается произведением . Таким образом, сама величина выражает плотность вероятности нахождения электрона в соответствующей области пространства.

Рис. 5. Электронное облако атома водорода.

Для уяснения физического смысла квадрата волновой функции рассмотрим рис. 5, на котором изображен некоторый объем вблизи ядра атома водорода. Плотность размещения точек на рис. 5 пропорциональна значению в соответствующем месте: чем больше величина , тем гуще расположены точки. Если бы электрон обладал свойствами материальной точки, то рис. 5 можно было бы получить, многократно наблюдая атом водорода и каждый раз отмечая местонахождение электрона: плотность размещения точек на рисунке была бы тем больше, чем чаще обнаруживается электрон в соответствующей области пространства или, иначе говоря, чем больше вероятность обнаружения его в этой области.

Мы знаем, однако, что представление об электроне как о материальной точке не соответствует его истинной физической природе. Поэтому рис. 5 правильнее рассматривать как схематическое изображение электрона, «размазанного» по всему объему атома в виде так называемого электронного облака: чем плотнее расположены точки в том или ином месте, тем больше здесь плотность электронного облака. Иначе говоря, плотность электронного облака пропорциональна квадрату волновой функции.

Представление о состоянии электрона как о некотором облаке электрического заряда оказывается очень удобным, хорошо передает основные особенности поведения электрона в атомах и молекулах и будет часто использоваться в последующем изложении. При этом, однако, следует иметь в виду, что электронное облако не имеет определенных, резко очерченных границ: даже на большом расстоянии от ядра существует некоторая, хотя и очень малая, вероятность обнаружения электрона. Поэтому под электронным облаком условно будем понимать область пространства вблизи ядра атома, в которой сосредоточена преобладающая часть (например, ) заряда и массы электрона. Более точное определение этой области пространства дано на стр. 75.

Как известно, основная задача классической механики заключается в определении положения макрообъекта в любой момент времени. Для этого составляется система уравнений, решение которой позволяет выяснить зависимость радиус-вектора от времени t . В классической механике состояние частицы при ее движении в каждый момент задается двумя величинами: радиус-вектором и импульсом . Таким образом, классическое описание движения частицы правомерно, если оно происходит в области с характерным размером, много большим, чем длина волны де Бройля . В противном случае (например, вблизи ядра атома) следует принимать во внимание волновые свойства микрочастиц. Об ограниченной применимости классического описания микрообъектов, имеющих волновые свойства, и говорят соотношения неопределенностей.

С учетом наличия у микрочастицы волновых свойств ее состояние в квантовой механике задается с помощью некоторой функции координат и времени (x, y, z, t ) , называемой волновой или - функцией . В квантовой физике вводится комплексная функция, описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности).

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения решения в частных физических задачах. Таким уравнением является уравнение Шрёдингера .

Теория, описывающая движение малых частиц с учетом их волновых свойств, называется квантовой , или волновой механикой . Многие положения этой теории кажутся странными и непривычными с точки зрения представлений, сложившихся при изучении классической физики. Следует всегда помнить, что критерием правильности теории, какой бы странной она не казалась поначалу, является совпадение ее следствий с опытными данными. Квантовая же механика в своей области (строение и свойства атомов, молекул и отчасти атомных ядер) прекрасно подтверждается опытом.

Волновая функция описывает состояние частицы во всех точках пространства и для любого момента времени. Для понимания физического смысла волновой функции обратимся к опытам по дифракции электронов. (Опыты Томсона и Тартаковского по пропусканию электронов через тонкую металлическую фольгу). Оказывается, что четкие дифракционные картины обнаруживаются даже в том случае, если направлять на мишень одиночные электроны, т.е. когда каждый последующий электрон испускается после того, как предыдущий достигнет экрана. После достаточной продолжительной бомбардировки картина на экране будет в точности соответствовать той, которая получается при одновременном направлении на мишень большого числа электронов.


Из этого можно сделать вывод о том, движение любой микрочастицы по отдельности, в том числе и место ее обнаружения, подчиняется статистическим (вероятностным) закономерностям, и при направлении на мишень одиночного электрона точку на экране, в которой он будет зафиксирован, заранее со 100%-й уверенностью предсказать невозможно.

В дифракционных опытах Томсона на фотопластинке образовывалась система темных концентрических колец. Можно с уверенностью сказать, что вероятность обнаружения (попадания) каждого испущенного электрона в различных местах фотопластинки неодинакова. В области темных концентрических колец эта вероятность больше, чем в остальных местах экрана. Распределение электронов по всему экрану оказывается таким же, каким является распределение интенсивности электромагнитной волны в аналогичном дифракционном опыте: там, где интенсивность рентгеновской волны велика, частиц в опыте Томсона регистрируется много, а там, где интенсивность мала - частицы почти не появляются.

С волновой точки зрения наличие максимума числа электронов в некоторых направлениях означает, что эти направления соответствуют наибольшей интенсивности волны де Бройля. Это послужило основанием для статистического (вероятностного) истолкования волны де Бройля . Волновая функция как раз и является математическим выражением, которое позволяет описать распространение какой-либо волны в пространстве. В частности, вероятность найти частицу в данной области пространства пропорциональна квадрату амплитуды волны, связанной с частицей.

Для одномерного движения (например, в направлении оси Ox ) вероятность dP обнаружения частицы в промежутке между точками x и x + dx в момент времени t равна

dP = , (6.1)

где | (x,t )| 2 = (x,t ) *(x,t ) - квадрат модуля волновой функции (значок * обозначает комплексное сопряжение).

В общем случае при движении частицы в трехмерном пространстве вероятность dP обнаружения частицы в точке с координатами (x,y,z) в пределах бесконечно малого объема dV задается аналогичным уравнением: dP = | (x,y,z,t) | 2 dV . Впервые вероятностную интерпретацию волновой функции дал Борн в 1926г.

Вероятность обнаружить частицу во всем бесконечном пространстве равна единице. Отсюда следует условие нормировки волновой функции:

. (6.2)

Величина является плотностью вероятности , или, что то же самое, плотностью распределение координат частиц. В простейшем случае одномерного движения частицы вдоль оси ОX среднее значение ее координаты вычисляется следующим соотношением:

<x(t )>= . (6.3)

Чтобы волновая функция являлась объективной характеристикой состояния микрочастицы, она должна удовлетворять ряду ограничительных условий. Функция Ψ, характеризующая вероятность обнаружения микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной), непрерывной (вероятность не может меняться скачком) и гладкой (без изломов) во всем пространстве.

Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Ψ1, Ψ2 , Ψn , то она может находиться в состоянии, описываемом линейной комбинацией этих функций:

, (6.4)

где Cn (n = 1, 2, 3) - произвольные, вообще говоря, комплексные числа.

Сложение волновых функций (амплитуд вероятностей, определяемых квадратами модулей волновых функций) принципиально отличает квантовуютеорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.

Волновая функция Ψ является основной характеристикой состояниямикрообъектов.

Например, среднее расстояние <r > электрона отядра вычисляется по формуле:

,

где вычисления проводятся, как и в случае (6.3). Таким образом, точно предсказать в дифракционных опытах, в каком месте экрана будет зафиксирован тот или иной электрон, невозможно, даже заранее зная его волновую функцию. Можно лишь с определенной вероятностью предположить, что электрон будет зафиксирован в определенном месте. В этом отличие поведения квантовых объектов от классических. В классической механике при описании движения макротел мы со 100%-й вероятностью знали заранее, в каком месте пространства будет находиться материальная точка (например, космическая станция) в любой момент времени.

Де Бройль использовал представление о фазовых волнах (волнах вещества или волнах де Бройля) для наглядного толкования правила квантования орбит электрона в атоме по Бору в случае одноэлектронного атома. Он рассмотрел фазовую волну, бегущую вокруг ядра по круговой орбите электрона. Если на длине орбиты укладывается целое число этих волн , то волна при обходе вокруг ядра будет всякий раз возвращаться в исходную точку с той же фазой и амплитудой. В этом случае орбита становится стационарной и не возникает излучения. Де Бройль записал условие стационарности орбиты или правило квантования в виде:

где R - радиус круговой орбиты, п - целое число (главное квантовое число). Полагая здесь и учитывая, что L = RP есть момент импульса электрона, получим:

что совпадает с правилом квантования орбит электрона в атоме водорода по Бору.

В дальнейшем условие (6.5) удалось обобщить и на случай эллиптических орбит, когда длина волны меняется вдоль траектории электрона. Однако, в рассуждениях де Бройля предполагалось, что волна распространяется не в пространстве, а вдоль линии - вдоль стационарной орбиты электрона. Этим приближением можно пользоваться в предельном случае, когда длина волны пренебрежимо мала по сравнению с радиусом орбиты электрона.

ВОЛНОВАЯ ФУНКЦИЯ, в КВАНТОВОЙ МЕХАНИКЕ функция, позволяющая найти вероятность того, что квантовая система находится в некотором состоянии s в момент времени t. Обычно пишется: (s) или (s, t). Волновая функция используется в уравнении ШРЕДИНГЕРА … Научно-технический энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ Современная энциклопедия

Волновая функция - ВОЛНОВАЯ ФУНКЦИЯ, в квантовой механике основная величина (в общем случае комплексная), описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих эту систему физических величин. Квадрат модуля волновой… … Иллюстрированный энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - (вектор состояния) в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих ее физических величин. Квадрат модуля волновой функции равен вероятности данного… … Большой Энциклопедический словарь

ВОЛНОВАЯ ФУНКЦИЯ - в квантовой механике (амплитуда вероятности, вектор состояния), величина, полностью описывающая состояние микрообъекта (эл на, протона, атома, молекулы) и вообще любой квант. системы. Описание состояния микрообъекта с помощью В. ф. имеет… … Физическая энциклопедия

волновая функция - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN wave function … Справочник технического переводчика

волновая функция - (амплитуда вероятности, вектор состояния), в квантовой механике основная величина, описывающая состояние системы и позволяющая находить вероятности и средние значения характеризующих её физических величин. Квадрат модуля волновой функции равен… … Энциклопедический словарь

волновая функция - banginė funkcija statusas T sritis fizika atitikmenys: angl. wave function vok. Wellenfunktion, f rus. волновая функция, f; волнообразная функция, f pranc. fonction d’onde, f … Fizikos terminų žodynas

волновая функция - banginė funkcija statusas T sritis chemija apibrėžtis Dydis, apibūdinantis mikrodalelių ar jų sistemų fizikinę būseną. atitikmenys: angl. wave function rus. волновая функция … Chemijos terminų aiškinamasis žodynas

ВОЛНОВАЯ ФУНКЦИЯ - комплексная функция, описывающая состояние квантовомех. системы и позволяющая находить вероятности и ср. значения характеризуемых ею физ. величин. Квадрат модуля В. ф. равен вероятности данного состояния, поэтому В.ф. наз. также амплитудой… … Естествознание. Энциклопедический словарь

Книги

  • , Б. К. Новосадов. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.… Купить за 855 грн (только Украина)
  • Методы математической физики молекулярных систем , Новосадов Б.К.. Монография посвящена последовательному изложению квантовой теории молекулярных систем, а также решению волновых уравнений в нерелятивистской и релятивистской квантовой механике молекул.…

· Квантовая наблюдаемая · Волновая функция · Квантовая суперпозиция · Квантовая запутанность · Смешанное состояние · Измерение · Неопределённость · Принцип Паули · Дуализм · Декогеренция · Теорема Эренфеста · Туннельный эффект

См. также: Портал:Физика

Волнова́я фу́нкция , или пси-фу́нкция \psi - комплекснозначная функция , используемая в квантовой механике для описания чистого состояния системы . Является коэффициентом разложения вектора состояния по базису (обычно координатному):

\left|\psi(t)\right\rangle=\int \Psi(x,t)\left|x\right\rangle dx

где \left|x\right\rangle = \left|x_1, x_2, \ldots , x_n\right\rangle - координатный базисный вектор, а \Psi(x,t)= \langle x\left|\psi(t)\right\rangle - волновая функция в координатном представлении .

Нормированность волновой функции

Волновая функция \Psi по своему смыслу должна удовлетворять так называемому условию нормировки, например, в координатном представлении имеющему вид:

{\int\limits_{V}{\Psi^\ast\Psi}dV}=1

Это условие выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией где-либо в пространстве равна единице. В общем случае интегрирование должно производиться по всем переменным, от которых зависит волновая функция в данном представлении.

Принцип суперпозиции квантовых состояний

Для волновых функций справедлив принцип суперпозиции , заключающийся в том, что если система может пребывать в состояниях, описываемых волновыми функциями \Psi_1 и \Psi_2, то она может пребывать и в состоянии, описываемом волновой функцией

\Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 при любых комплексных c_1 и c_2.

Очевидно, что можно говорить и о суперпозиции (наложении) любого числа квантовых состояний, то есть о существовании квантового состояния системы, которое описывается волновой функцией \Psi_\Sigma = c_1 \Psi_1 + c_2 \Psi_2 + \ldots + {c}_N{\Psi}_N=\sum_{n=1}^{N} {c}_n{\Psi}_n.

В таком состоянии квадрат модуля коэффициента {c}_n определяет вероятность того, что при измерении система будет обнаружена в состоянии, описываемом волновой функцией {\Psi}_n.

Поэтому для нормированных волновых функций \sum_{n=1}^{N}\left|c_{n}\right|^2=1.

Условия регулярности волновой функции

Вероятностный смысл волновой функции накладывает определенные ограничения, или условия, на волновые функции в задачах квантовой механики. Эти стандартные условия часто называют условиями регулярности волновой функции.

  1. Условие конечности волновой функции. Волновая функция не может принимать бесконечных значений, таких, что интеграл (1) станет расходящимся. Следовательно, это условие требует, чтобы волновая функция была квадратично интегрируемой функцией, т.е принадлежала гильбертовому пространству L^2. В частности, в задачах с нормированной волновой функцией квадрат модуля волновой функции должен стремиться к нулю на бесконечности.
  2. Условие однозначности волновой функции. Волновая функция должна быть однозначной функцией координат и времени, так как плотность вероятности обнаружения частицы должна определяться в каждой задаче однозначно. В задачах с использованием цилиндрической или сферической системы координат условие однозначности приводит к периодичности волновых функций по угловым переменным.
  3. Условие непрерывности волновой функции. В любой момент времени волновая функция должна быть непрерывной функцией пространственных координат. Кроме того, непрерывными должны быть также частные производные волновой функции \frac{\partial \Psi}{\partial x}, \frac{\partial \Psi}{\partial y}, \frac{\partial \Psi}{\partial z}. Эти частные производные функций лишь в редких случаях задач с идеализированными силовыми полями могут терпеть разрыв в тех точках пространства, где потенциальная энергия, описывающая силовое поле, в котором движется частица, испытывает разрыв второго рода .

Волновая функция в различных представлениях

Набор координат, которые выступают в роли аргументов функции , представляет собой полную систему коммутирующих наблюдаемых . В квантовой механике возможно выбрать несколько полных наборов наблюдаемых, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор величин определяет представление волновой функции . Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения или представление Фока и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении , то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении , то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импульс .

Матричная и векторная формулировки

Волновая функция одного и того же состояния в различных представлениях - будет соответствовать выражению одного и того же вектора в разных системах координат. Остальные операции с волновыми функциями так же будут иметь аналоги на языке векторов. В волновой механике используется представление, где аргументами пси-функции является полная система непрерывных коммутирующих наблюдаемых, а в матричной используется представление, где аргументами пси-функции является полная система дискретных коммутирующих наблюдаемых. Поэтому функциональная (волновая) и матричная формулировки очевидно математически эквивалентны.

Философский смысл волновой функции

Волновая функция представляет собой метод описания чистого состояния квантовомеханической системы. Смешанные квантовые состояния (в квантовой статистике) следует описывать оператором типа матрицы плотности . То есть, некая обобщённая функция от двух аргументов должна описать корреляцию нахождения частицы в двух точках.

Следует понимать, что проблема, которую решает квантовая механика, - это проблема самой сути научного метода познания мира.

См. также

Напишите отзыв о статье "Волновая функция"

Литература

  • Физический энциклопедический словарь / Гл. ред. А. М. Прохоров. Ред. кол. Д. М. Алексеев, А. М. Бонч-Бруевич, А. С. Боровик-Романов и др. - М.: Сов. Энциклопедия, 1984. - 944 с.

Ссылки

  • Квантовая механика - статья из Большой советской энциклопедии .
или пси-функция – Основной математический объект квантовой механики при ее формулировке, как волновой механики.
В простейшем случае это комплексная квадратично интегрируема функция координат и времени, ассоциированная с определенным физическим объектом, например, с элементарными частицами, либо с физическим системой. Описание квантовой системы с помощью функции, которая бы описывала ее волновые свойства предложил Эрвин Шредингер.
Борн Макс интерпретировал волновую функцию, как амплитуду вероятности. В этой интерпретации квадрат модуля волновой функции соответствует плотности вероятности положения частицы. Таким образом, вероятность того, что частица находится в области пространства W в момент времени t определяется как

А – Функция, комплексно сопряженная с

При интегрировании по всему пространству это выражение, как вероятность вполне определенного события, должен давать единицу:

Это условие называется условия нормировки пси-функции.
Физическая величина, которая может определяться в эксперименте, в квантовой механике задается определенным эрмитовых операторов. Зная волновую функцию можно определить среднее значение такой величины с помощью правила

,

Где – Это квантовомеханический оператор.
Для описания элементарных частиц, которые могут иметь отличный от нуля спин, однокомпонентной, скалярной, волновой функции недостаточно. Движение таких частиц задается совокупностью из нескольких волновых функции, которая имеет широкую название: вектор состояния.

Например, электрон со спином 1 / 2 описывается совокупностью четырех волновых функций.
Несмотря на слово «вектор», вектор состояния не является настоящим вектором в пространстве. Здесь этот термин употребляется скорее в смысле вектора линейной алгебры. По пространственных свойств, то при вращении системы координат, вектор состояния в целом может иметь особые свойства. Например, вектор состояния для электрона Спинор.
Обычно совокупность нескольких волновых функций, входящих в состав вектора состояния, тоже называют волновой функцией.
Волновая функция обозначена с точностью до произвольного множителя в форме e i ?, где? – любое действительное число. Подстановка функции

Не меняет средних значений наблюдаемых физических величин.
Волновая функция системы многих частиц
Волновая функция квантовой системы, состоящей из нескольких частиц, зависит от координат всех частиц. Например, для двух частиц . При определении средних значений наблюдаемых величин интегрирование проводится по всему конфигурацийноми пространстве. Например, для двух частиц

В случае тождественности частиц, на волновую функцию накладывается дополнительное условие, связанное с инвариантностью относительно перестановок этих частиц, согласно принципу Тождественные. Квантовые частицы делятся на два класса – фермионы и бозоны. Для фермионов

Есть волновая функция меняет знак при перестановке частиц. Такое фунции называют антисимметричной относительно перестановок. Для бозонов

Т.е. при перестановке частиц волновая функция остается неизменной. Такую функцию называют симметричной относительно перестановок.