С.Наметкин (1876–1950). Вклад учёных нашей Родины в победу в Великой Отечественной войне

Каримов Ильдар

Доклад и презентация.

Скачать:

Предварительный просмотр:

Государственное бюджетное образовательное учреждение среднего профессионального образования Московской области «Ликино-Дулевский индустриальный техникум»

ВВЕДЕНИЕ

"Участие в разгроме фашизма - самая благородная и великая задача, которая когда-либо стояла перед наукой".

Президент Академии наук СССР в годы войны В. А. Комаров

Тема моего доклада «Вклад советских физиков в Великую Победу». Вся наша страна сейчас находится в преддверии Великого праздника - 70-летия Победы. Чем дальше в прошлое уходит война, тем более значимым для нас становится подвиг советского народа в Великой Отечественной войне, тем весомее считается вклад учёных и конструкторов в эту победу. Физика – одна из наук на основе, которой базируется техника. В достижение Великой Победы велик вклад ученых-физиков, которые в годы войны принимали участие в наращивании мощности массового серийного производства оружия, в разработке мер против немецкой боевой техники. Многие физики с оружием в руках отстаивали независимость нашей страны.

Прошло уже 70 лет с того дня, когда наш народ впервые отпраздновал День Победы над фашистскими захватчиками. Труден был путь к этой победе. Прежде чем напасть на нашу страну, фашисты захватили всю Западную Европу и подчинили себе европейскую промышленность. Вся Европа кормила фашистские войска и снабжала их самым современным оружием. Казалось, что на всей земле нет такой силы, которая могла бы остановить фашизм, преградить его армиям путь к господству над миром.

Война предъявила каждому жителю нашей страны предельно суровые требования - и героизм стал нормой жизни, его проявляли даже дети. Героями были не только те, кто горел в танке, таранил вражеский самолёт или, спасая товарищей, грудью закрывал пулеметную амбразуру. Не меньше героизма было и в жизни тех, кто оказывал сопротивление фашистам на временно оккупированных территориях, или тех, кто в жуткий мороз на пустырях сибирских городов восстанавливал эвакуированные заводы, вооружал, одевал, кормил наших солдат.

Усилия советских учёных были направлены на усиление обороноспособности страны. На долю физиков выпало решение задачи совершенствования средств вооружения Красной Армии. Ученые должны были создавать, новые способы производства самых разных материалов: взрывчатых веществ большой взрывной силы, топлива для реактивных снарядов «катюш», высококачественных бензинов, каучука, легирующих материалов для изготовления броневой стали и легких сплавов для авиационной техники, лекарственных препаратов для госпиталей.

В предвоенные годы в СССР существовало несколько крупных научных центров, одними из самых значимых были Физический институт имени Лебедева в Москве, его в те годы возглавлял Сергей Иванович Вавилов, и Ленинградский физико-технический институт, возглавляемый академиком Абрам Федоровичем Иоффе.

С началом Великой Отечественной войны многие теоретические направления физической науки были отодвинуты на второй план, а учёные-физики занялись насущными проблемами армии, авиации и флота, все силы и знания отдавая делу победы над фашизмом. Ведущие ученые нашей страны выпустили обращение "К ученым всех стран", подписанного действительными членами Академии наук СССР. Вот несколько строк из этого обращения :"В этот час решительного боя советские ученые идут со своим народом, отдавая все силы борьбе с фашистскими поджигателями войны - во имя защиты своей родины и во имя защиты свободы мировой науки и спасения культуры, служащей всему человечеству". Под этим обращением стоят в числе других подписи крупнейших советских физиков Абрама Федоровича Иоффе и Петра Леонидовича Капицы.

Советские ученые, конструкторы, инженеры с первых дней войны были полны решимости отдать все свои силы, знания, весь свой труд и опыт великому делу разгрома фашизма.«Все для фронта, все для победы!» – эти слова стали девизом миллионов. Звучал призыв: «Всегда опережать технику врага». «Я не вижу моего врага – немца – конструктора, который сидит над своими чертежами…в глубоком убежище. Но, не видя его, я воюю с ним…я знаю, чтобы не придумал немец, я обязан придумать лучшее. Я собираю свою волю и фантазию,…все мои знания и опыт,…чтоб в день, когда два новых самолета – наш и вражеский столкнулись в военном небе, наш оказался победителем» – писал авиаконструктор.

Размагничивание судов

Еще до войны в Ленинградском физико-техническом институте под руководством профессора А.П. Александрова группой ученых были начаты работы по уменьшению возможности поражения кораблей магнитными минами. В их ходе был создан обмоточный метод размагничивания судов. Известно, что земной шар создает вокруг себя магнитное поле. Оно небольшое по величине, всего около десятитысячной доли Тесла. Однако его достаточно, чтобы ориентировать стрелку компаса по своим силовым линиям. Если в этом поле находится массивный предмет, например, корабль, и железа (вернее стали) в нем много, несколько тысяч тонн, то магнитное поле концентрируется и может увеличиться в несколько десятков раз. К августу 1941 года ученые защитили от магнитных мин основную часть боевых кораблей на всех действующих флотах и флотилиях. Этот подвиг ученых увековечен памятником им в Севастополе. На кораблях специальным образом располагали большие катушки из проводов, по которым пропускался электрический ток. Он порождал магнитное поле, компенсирующее поле корабля, т.е. поле прямо противоположного направления. Все боевые корабли подвергались в портах «антимагнитной обработке» и выходили в море размагниченными. Тем самым были спасены многие тысячи жизней наших военных моряков.

Магнитный механизм для подрыва танков

В начале войны к ученым обратились представители инженерных войск с просьбой выяснить, нельзя ли разработать мину не для кораблей, а для танков. Эта работа была сделана на Урале. Физикам предоставили несколько танков. Провели измерения магнитного поля под ними на разных глубинах. Оказалось, что поле довольно заметное, и можно было попробовать применить магнитный механизм для подрыва танков. Однако ставилось важное дополнительное требование: сама мина должна содержать как можно меньше металла. Ведь к тому времени уже были разработаны миноискатели. Потребовалось придумать специальный сплав для своеобразной стрелки «компаса», замыкающего цепь, содержащую небольшую батарейку, сплав, легко намагничивающийся под действием поля танка. В результате работы суммарное количество металла ограничивалось 2-3 граммами на одну мину, а магнитик из сплава был настолько хорош, что позволял подорвать не только танк, но и автомашину. Что уж говорить о паровозах...

Воздушная армия

В разгар Великой Отечественной войны. В суровых условиях военного времени, был создан ряд новых машин. Вот лишь несколько из них:

истребитель высокого класса Ла-5 (конструктор С.А. Лавочкин) обладал скороподъёмностью, маневренностью, огневой мощью и большим потолком полёта (более 11 км); он был прост в управлении и лёгок, от предыдущей модели ЛаГГ-3 отличался более мощным двигателем пятиконечной формы с воздушным охлаждением, такой двигатель, как броня, защищал лётчика при лобовых атаках;

Як-3 – самый лёгкий и маневренный истребитель Второй мировой войны (1943 г., конструктор А.С. Яковлев); взлётная масса2650 кг, потолок 12 км, для подъёма на5 км требовалось всего 4,1 мин;

Модифицированный штурмовик Ил-2 (1942 г., конструктор С.В. Ильюшин) с форсированным двигателем и крупнокалиберным пулемётом; скорость до430 км/ч; хвостовая часть была защищена стрелковой установкой; фашисты прозвали его « чёрной смертью»;

пикирующий бомбардировщик Ту-2 (КБ А.Н.Туполёв) с двумя двигателями мощностью по 1361,6 кВт, потолок9,5 км, дальность полёта 2100 км; скорость до 570 км/ч, бомбовая нагрузка100 кг! Специальное оборудование позволяло прицельно сбрасывать бомбы при разных режимах полёта – по горизонтали и при пикировании.

Дорога жизни

В истории обороны Ленинграда, когда город 29 месяцев, почти 2 года, был во вражеском кольце, и в деятельности ленинградских ученых во время блокады есть эпизод, который связан с «Дорогой жизни». Эта дорога пролегала по льду замерзшего Ладожского озера: была проложена автотрасса, связывающая окруженный врагом город с Большой землей. От нее зависела жизнь. Вскоре выяснилось на первый взгляд совершенно необъяснимое обстоятельство: когда грузовики шли в Ленинград максимально нагруженные, лед выдерживал, а на обратном пути, когда они вывозили больных и голодных людей, т.е. имели значительно меньший груз, лед часто ломался, и машины проваливались под лед. Руководство города поставило перед учеными задачу: выяснить, в чем дело, и дать рекомендации, избавляющие от этой опасности. Физик П.П. Кобеко установил, что главную роль играет деформация льда. Эта деформация и распространяющиеся от нее по льду упругие волны зависят от скорости движения транспорта. Критическая скорость 35 км/ч: если транспорт шел со скоростью, близкой к скорости распространения ледовой волны, то даже одна машина могла вызвать гибельный резонанс и пролом льда. Большую роль играла интерференция волн сотрясений, возникающих при встрече машин или обгоне; сложение амплитуд колебания вызывало разрушение льда.

Артиллерийские установки.

Учёные вложили свои знания и труд в создании новых артиллерийских установок – реактивных, - которые обеспечивали мощный маневренный огонь и массивные залпы, они были любовно названы в народе «катюшами». Реактивные снаряды имели ряд преимуществ перед обычными: заряд, сообщающий движение, находился внутри, отсутствовала отдача при выстреле, а потому не требовались дорогие орудийные стволы из высококачественной стали. Эти установки были малогабаритными и монтировались на автомобилях. Для увеличения дальности полёта реактивного снаряда учёные предложили удлинить заряд, использовать более калорийное топливо или две одновременно работающие камеры сгорания. Для улучшения этого оружия, ещё очень несовершенного из-за своей новизны, было создано КБ во главе с В.П.Барминым – крупным учёным в области механики и машиностроения. Во всех военных операциях, начиная с лета 1944 г., реактивная артиллерия уже выступала как мощное средство подавления врага. И в этом – творческий подвиг создателей такого оружия.

Творческая смекалка в условиях суровых будней

Как много значили научно-технические знания и творческая смекалка в условиях суровых партизанских будней! Большая надежда возлагалась на самодельные средства – простые, надёжные, которые можно было лёгко изготовить из имеющихся под рукой материалов, замаскировать и спрятать. Много среди партизан умельцев, мастеров на все руки. Когда кончились запасы взрывчатки, партизаны действовали вручную: ломами, гаечными ключами, различными рычагами портили железнодорожные пути, устанавливали рельсовые клины и пускали под откос составы. Именно для бойцов «невидимого фронта» создал свой «партизанский котелок» академик А.Ф. Иоффе. В этом котелке из нескольких десятков термопар сурьмянистый цинк – константан был смонтирован простейший термогенератор. Когда в котелок наливали воду и помещали над костром, спаи термопар, размещённые с внешней стороны, в его дне, нагрелись пламенем, а другие – внутренние – оставались холодными (имели температуру воды). И хотя разность температур спаев составляла всего 250-300°С, этого было достаточно для выработки электроэнергии, необходимой для питания радиопередатчиков. Такие «котелки» помогали обеспечить партизанам радиосвязь.

Оружие пехоты

Основное стрелковое оружие российской пехоты - автомат Калашникова. Разработка начата в 1943 году сержантом Калашниковым в госпитальной палате. Автомат создан «солдатом для солдат», как говорят военные, в 1947 году. Принят автомат АК-47 на вооружение Советской Армии в 1949 году, а старшему сержанту Калашникову присуждена была Сталинская премия. И сейчас АК не потерял своей актуальности: на него могут крепиться подствольный гранатомет ГП-25 или ГП-30, устанавливаться ночные или оптические прицелы и приборы для беззвучной или беспламенной стрельбы.

Броня крепка и танки наши быстры.

И в конструкторских бюро танкостроителей полным ходом шла напряженная творческая работа. В 1943 г под руководством инженеров Ж. Я. Котина, А.И. Благонравова, Н.А. Духова в краткие сроки был создан новый советский тяжелый танк Ис-2. Его масса была 45 т., по технической характеристике значительно лучше: толщина брони 90-120 мм, скорость до 52 км/ч. Танк имел мощное вооружение: пушку 122 мм калибра, и 4 пулемета. Создание Ис-2 явилось блестящим научно-техническим достижением. Эта машина была признана одной из самых лучших в истории войны. На базе танка Ис-2 – в 1944 г„ был создан ряд тяжелых самоходных артиллерийских установок, в том числе Ису-152 своими огневыми залпами эта гусеничная «царь-пушка» громила врага в конце войны. Появление на полях сражений машин Ис-2 и Ису-152 похоронило надежды гитлеровских захватчиков на техническое превосходство их танков – «пантер, тигров, фердинандов». Вначале 1942 г. коллектив под руководством В.Г. Грабина пополнил вооружение нашей армии новым могущественным орудием – 76-миллиметровой пушкой Зис-3, ставшей самой массовой в годы ВОВ. Зис-3 делала 25 выстрелов в минуту, снарядами массой по 6,23 кг, дальность стрельбы составляло 13 км. Весной 1943г. была создана противотанковая пушка - 100-миллиметровая, стреляла 10 ударов в минуту снарядами массой по 16, 3 кг, поражала на дальности 1500 метров, все типы танковых самоходных установок противника. В 1943 году нашим артиллеристам был передан на вооружение 160-миллиметровый миномёт – грозное наступательное оружие, подобных ему не имела ни одна армия мира. Создателем его был И. Г. Теверовский. Советская артиллерия, названная «богом войны» завоевала себе в боях заслуженную славу. Битва на Курской дуге явилась одной из ярких страниц в ее истории. Большую роль сыграла она и в других военных операциях.

Ядерная энергетика

11 февраля 1943 г. Сталин подписал постановление Правительства СССР об организации работ по использованию атомной энергии в военных целях. Возглавил это дело В.М. Молотов. По рекомендации А.Ф. Иоффе общее научное руководство было поручено И.В. Курчатову. Ю.Б. Харитон возглавил исследования по созданию конструкции ядерного заряда.

70 лет отделяют нас от того дня, когда фашистская Германия подписала акт о безоговорочной капитуляции. Война, бушевавшая на планете 6 лет, а на нашей земле 4 года, унесшая жизни миллионов людей, закончилась 9 мая 1945 года победой Советского Союза над фашистской Германией. Мы не забудем всех тех, кто с оружием в руках на полях сражений в смертельной схватке с фашизмом отстоял свободу и независимость нашей Родины, кто варил сталь, изготовлял снаряды, строил танки, самолеты, корабли. Это благодаря их неимоверному труду, знаниям, практическому опыту в короткие сроки совершенствовалась уже имеющаяся техника и рождались проекты новой боевой техники, разрабатывались материалы для создания надежного боевого оружия, не прекращались научные исследования, которые в значительной степени приблизили Великую Победу и создали основу для достижения нашими учеными и нашей отечественной наукой авангардного положения в мировой науке и технике.

В конце доклада хочу привести высказывание академика С.И. Вавилова: "Советская техническая физика... с честью выдержала суровые испытания войны. Следы этой физики всюду: на самолете, танке, на подводной лодке и линкоре, в артиллерии, в руках нашего радиста, дальномерщика, в ухищрениях маскировки. Дальновидное объединение теоретических высот с конкретными техническими заданиями, неуклонно проводившееся в советских физических институтах, в полной мере оправдало себя в пережитые грозные годы"

Список литературы:

  1. Левшин Б. В. Академия наук СССР в годы Великой Отечественной войны. М.: «Наука», 1966.
  2. Арлазоров М. Фронт идет через КБ. М.: «Знание», 1969.

    "Участие в разгроме фашизма - самая благородная и великая задача, которая когда-либо стояла перед наукой". Президент Академии наук СССР в годы войны В. Л. Комаров

    Ведущие ученые нашей страны выпустили обращение "К ученым всех стран", подписанного действительными членами Академии наук СССР. Вот несколько строк из этого обращения:"В этот час решительного боя советские ученые идут со своим народом, отдавая все силы борьбе с фашистскими поджигателями войны - во имя защиты своей родины и во имя защиты свободы мировой науки и спасения культуры, служащей всему человечеству". Под этим обращением стоят в числе других подписи крупнейших советских физиков Абрама Федоровича Иоффе и Петра Леонидовича Капицы.

    Воздушная армия

    Размагничивание судов 27 июня 1941 г. был издан приказ об организации бригад по срочной установке размагничивающих устройств на всех кораблях флота. Научным руководителем работ был назначен А.П. Александров. Были начаты работы по уменьшению возможности поражения кораблей магнитными минами. В их ходе был создан обмоточный метод размагничивания судов.

    С помощью положенной на палубу или подвешенной с наружной стороны бортов большой петли 1 из специального кабеля, по которой пропускался электрический ток, вокруг кабеля создавалось искусственное магнитное поле 2 противоположного направления по отношению к собственному магнитному полю 3 корабля; в итоге результирующее магнитное поле судна становилось незначительным и не вызывало срабатывания магнитной мины

    Броня крепка и танки наши быстры.

    Артиллерийские установки. Учёные вложили свои знания и труд в создании новых артиллерийских установок – реактивных, - которые обеспечивали мощный маневренный огонь и массивные залпы, они были любовно названы в народе «катюшами».

    Дорога жизни В истории обороны Ленинграда, когда город 29 месяцев, почти 2 года, был во вражеском кольце, и в деятельности ленинградских ученых во время блокады есть эпизод, который связан с «Дорогой жизни».

    "Советская техническая физика... с честью выдержала суровые испытания войны. Следы этой физики всюду: на самолете, танке, на подводной лодке и линкоре, в артиллерии, в руках нашего радиста, дальномерщика, в ухищрениях маскировки. Дальновидное объединение теоретических высот с конкретными техническими заданиями, неуклонно проводившееся в советских физических институтах, в полной мере оправдало себя в пережитые грозные годы" Академик С.И. Вавилов

По учебной дисциплине «История»

Тема

«Вклад советской науки в победу над фашистами»



Введение

1. Участие ученых в боевых действиях

Вклад ученых в победу над фашизмом

Заключение

Список использованных источников


Введение


Все дальше и дальше идут в прошлое года второй мировой войны, но победа в Великой Отечественной войне и победа над фашизмом нашего народа навсегда есть и будет в наших мыслях и сердцах, а также в истории как одно из величайших событий, которое повлияло на мировое развитие. Собравшись вместе перед общей бедой, и забыв при этом о собственных невзгодах и интересах, весь наш народ поднялся на защиту своей Родины. Значительный вклад в победу над фашизмом (врагом) внесли и наши ученые, которые выполняли в экстремальных условиях свою главную задачу - обеспечение единства, техническую и стратегическую поддержку Родине, что имело особо важную роль в становлении оборонной мощи страны и промышленности.

июня 1941 года на экстренном заседании президиум АН СССР призвал ученых мобилизовать все силы и усилия на борьбу с оккупантами.

При эвакуации академические и другие НИИ сохранили свои научные коллективы. Война не разорвала связь науки с жизнью и производством, а лишь дала толчок изменить мирную направленность своих научных работ.

Тематика научных исследований была сосредоточена в трех главных и основных направлениях:

-разработка военно-технических проблем,

-научная помощь промышленности,

-мобилизация сырьевых ресурсов, для этого и были созданы межотраслевые комитеты и комиссии.

Годы Великой Отечественной войны стали временем оригинальных и смелых технических решений, глобального подъема творческой мысли инженеров, и ученых, а также рабочих и конструкторов.

Результаты работы Академии наук СССР, а также и других научных учреждений дали возможность непрерывно увеличивать и расширять производственную и сырьевую базу, работы по созданию, конструированию и модернизации военной техники, и внедрение ее в массовое производство.

Цель данной работы: определить вклад российских ученых в победу над фашизмом, а также рассмотреть деятельность научных учреждений в годы войны, их значение и достижения.

В рамках этой цели в работе решаются такие задачи:

1) Определить, кто из учёных принимал участие в боевых действиях.

) Понять, какие задачи ставились, и приходило решать физикам и математикам и в годы войны.

Среди методов исследования мы использовали такие, как:

изучение литературных источников;

сравнительный анализ полученной информации;

отбор информации для работы;

изучение и решение задач, которые могли решаться в годы войны.

Актуальностьданной работы заключается в том, что реальных участников победы над немецко-фашистками захватчиками почти не осталось в живых, наши ровесники знают о той страшной и разрушительной войне только из кинофильмов и книг. Но память человеческая несовершенна, многие события забываются. Мы должны знать и помнить людей, которые творили и приближали победу и подарили нам будущее. Нам необходимо знать факты о вкладе нашей науки в Победу. Про это необходимо рассказывать, этот материал надо приумножать и хранить, чтобы люди знали и помнили, кому мы обязаны годами мирной жизни без войны, кто спас мир от чумы фашизма.


1. Участие ученых в боевых действиях

война авиация радиолокация ученый

В годы Великой Отечественной войны усилия Академии наук были направлены на всемерное содействие укреплению обороноспособности страны. В трудных условиях военного времени ученые Академии работали над проблемами, связанными с созданием нового вооружения, развитием оборонного производства, изысканием новых ресурсов, разработкой методов лечения раненых и т.д.

Патриотический лозунг: "Все для фронта, все для победы!", определил главный смысл работы каждого нашего человека, каждого ученого, конструктора, инженера.

Огромный вклад ученых математиков, физиков, медиков, химиков, конструкторов, инженеров в итоговую победу над фашизмом.

Большое количество ученых были мобилизованы или ушли на фронт добровольцами. В тяжелые дни для страны они показали себя верными и обязанными родине, готовыми на самопожертвование, и отдать всего себя во благо и освобождение своей родины. Стоит отметить, что многие из тех, кто ушли на фронт, не вернулись и не приступили к своей любимой работе в учебных центрах, лабораториях, инженерных производствах. Среди погибших много было талантливых ученых, подававших значительные надежды, которые были способны внести значительный вклад в прогресс наших знаний.

Добровольцем ушел на фронт и принимал участие в боях с фашистскими оккупантами в Украине, в Крыму, в Восточной Пруссии и в Прибалтике известный педагог и математик А. А. Ляпунов. Он доблестно воевал и внес много ценного в правила стрельбы. Здесь он использовал свой опыт математика, которому свойственно искать самые лучшие решения. Его предложения в ходе боевых действий улучшили показатели качества и эффективности стрельбы.

В частях тяжелой артиллерии на Пулковских высотах отстаивал город Ленинград известный специалист в области теории вероятностей, теории чисел и математической статистики, доктор физико-математических наук Ю. В. Линник.

Свой вклад в победу над фашистскими захватчиками внес и Мичуринский учительский институт. За все время войны из института на фронт было отправлено 176 человек: из которых 27 преподавателей и 149 студентов. По-разному сложились их судьбы. К примеру, отметим Алексея Макарова - в начале войны он поступил в институт, а уже в ноябре 1941 г. ушел на фронт. В одном из боев был тяжело ранен, и, спасая товарища, попал под немецкий танк. Спас его глубокий снег, в который юноша был глубоко вдавлен. Так в снегу и пролежал трое суток. Остался без обеих ног, стал инвалидом первой группы. А было ему тогда всего - то 18 лет! В 1943 году Алексей вернулся в институт, окончил его, а далее много времени проработал учителем - словесником в школах Мичуринского района.

Еще один пример, выпускник Мичуринского учительского института (тогда еще педагогического училища) Гончаров Андрей Андреевич. По первому зову ушел на фронт защищать родину. Воевал на Севере, потом сражался за Украину. Под Севастополем попал в лагерь военнопленных, совершил два побега. Во второй раз успешно. День Победы встретил в Праге. И вот, наконец, вернулся на родину, стал работать учителем начальных классов. Более 30 лет проработал А. А. Гончаров в Терской средней школе и за эти годы сумел воспитать не одно поколение настоящих, честных людей.

Да, многие молодые ученые, студенты, учителя могли бы стать гордостью нашей науки, но война прервала и зачеркнула развитие так славно начатого ими научного пути. Сколько замыслов осталось не осуществленными, какие россыпи научных сокровищ они унесли с собой. Справедливо говорят, что трудно даже представить, какой была бы сегодня наука, не понеси мы этих потерь.


. Вклад ученых в победу над фашизмом


Мы должны преклоняться перед выдержкой, смелостью, самоотверженностью и верностью, которую проявляли ученые-воины нашей родине. Но не стоит забывать и о другом вкладе ученых, инженеров, физиков, математиков, медиков, химиков в победу нашего народа над захватчиками, сильным и коварным врагом. Было понятно, что не только храбрость армии, число пушек и искусство маршалов могло определить успешный исход военных действий: он в значительной степени так же зависит от качества вооружения, его совершенства, новизны и прочее.

Нужно было в максимально краткий промежуток времени создать технику, которая должна превосходить технику врага по всем параметрам. И эта сложная и ответственная задача легла на плечи советских ученых и конструкторов, проведя невидимую линию фронта через научные конструкторские бюро, лаборатории: там, так и на линии огня, ишел непрерывный процесс, напряжение сражение мыслей, которые рождались и воплощались в будущем в металл и научно-технические идеи.

Так какие же математические задачи для фронта и тыла пришлось решать ученым военного времени?

Из энциклопедий, литературных источников, интернет ресурсов мы многое узнали о фактах великого вклада российских ученых во имя победы.

Остановимся более подробно об основных достижения науки и ученых во время Великой Отечественной войны:

Авиации.

В годы войны техника была сложной и разнообразной. К ее использованию требовалось широкое знание и использования математических расчетов для ее изготовления и дальнейшей эксплуатации.

Достижения отличных результатов в совершенствовании боевых самолетов позволило А. С. Яковлеву и его товарищу С. А. Лавочкину создать и изготовить грозные истребители, С. В. Илюшину - неуязвимые штурмовики, А.Н. Туполеву, Н. Н. Поликарпову и В. М. Петлякову - мощные бомбардировщики.

Но, при получении больших скоростей, авиаконструкторы столкнулись с неизвестными раньше явлениями в управлении и поведении самого самолета. В некоторых режимах работы моторов в конструкциях произвольно возникало возбуждение, и отметим, что с довольно большой амплитудой, и данное явление, которое получило название флаттер, вело к разрушению самолета в воздухе. Опасности, так же, подстерегали эти скоростные машины и на земле. При взлете и посадке самолета колеса самопроизвольно могли вилять из стороны в сторону, данное явление, получило название шимми, оно довольно часто вызывало катастрофы самолетов на аэродромах. Выдающийся математик тех времен М. В. Келдыш, при поддержке возглавляемым ним коллектив ученых занялись исследованием причины флаттера и шимми.

Созданная учеными математическая теория данных опасных явлений дала возможность советской авиационной науке вовремя защитить конструкции скоростных самолетов от появления таких вибраций. Ученые дали большое количество рекомендации, которые необходимо было учитывать при конструировании подобных самолетов. Как результат наша авиация во время войны не знала случаев разрушения самолетов по причине неправильного расчета конструкций, этим были и спасены жизни большого количества летчиков, а также боевые машины воздуха.

Наука - флоту

Помощь ученых во главе которых, был А. П. Александровым морским военным в размагничивании боевых кораблей.

В первые полтора года войны, наши войска отбивались от врага на суше, в воздухе и на море.

Одним из первых мероприятий, которое осуществили немецко - фашистское командования на морских просторах военных действий имела место попытка заблокировать наши корабли в их базах и связать их боевые действия массовыми постановками магнитных мин. Фашисты возлагали огромные надежды на эффективность данного (нового) вида оружия и были уверены, что наши моряки и специалисты в области кораблестроения не смогут быстро среагировать и найти способы защиты наших кораблей. Но отметим, что наши физики в союзе с математиками и механиками в максимально кратчайшие сроки оказали значительную поддержку морякам нейтрализовать и обезвредить влияние мин врага.

Идею размагничивания предложили и пустили в действие ученые под командованием академика А. П. Александровым. Группа Александрова выехала на Балтику, где в срочном порядке принялась за размагничивание кораблей, что было надежной защитой их от неконтактных мин.

Ученые вели свои работы непосредственно в районе боевых действий, и в ближайшее время данная проблема защиты кораблей от такого типа мин была в полной мере решена. Факты говорят, что ни один наш корабль, который был снабжен системой противоминной защиты, не был подорван на вражеских минах.

Идея «Катюши» зарождалась в лабораториях мехмата МГУ.

Основные институты Академии наук СССР были эвакуированы на восток страны. В непривычно тяжелых условиях, иногда и без света и тепла, ученые ни на минуту не прекращали свою работу.

Не иначе, как героический труд рабочих, инженеров и техников советской промышленности позволил нам уже летом 1941 года начать оснащение Вооруженных Сил новыми, более совершенными видами боевой техники. В основном войска получали новое оружие - реактивные минометы, самоходные артиллерийские установки, вселяющие в противника некий ужас.

Из текста донесения в немецкий генеральный штаб: «Русскими было применена батарею с огромным количеством орудий. Снаряды фугасно - зажигательные, но необычайного действия. Войска, обстрелянные русскими военными свидетельствуют - огневой налет напоминает урагану. Снаряды разрываются одновременно. Потери в людях огромные».

Расчеты по монтажу и внедрения в вооруженные силы нового оружия выполнил научный коллектив под руководством И. Гвая. С ним связана забавная история: когда И. Гвай пришел в Высшую аттестационную комиссию за дипломом, у него спросили: "А где же Ваша диссертация?" В ответ услышали: "Стреляет на фронте!"

Реактивная получила официальное название «БМ-13», а в народе ее стали называли «Катюшей».

Радиотехнические средства. Существенный вклад в развитие радиотехнических установок, которые были представлены для военных целей, внес в годы войны известный академик А.Ф. Иоффе, который на тот период был председателем комиссии по научно-техническим военно-морским вопросам. Специально для партизанских отрядов академик А.Ф. Иоффе разработал термоэлектрогенератор, который служил источником питания для радиоприемников и передатчиков. В его состав входило несколько термоэлементов, которые крепились к дну солдатского котелка. В сам котелок заливалась вода, и он ставился на костер. Вода определяла температуру одних спаев, а температуру других, в то время, "задавало" пламя костра, которое нагревало дно котелка.

Перепад температур был порядка 250-300 градусов, чего хватало для надежного обеспечения питания переносной радиоаппаратуры партизан. Данный термогенератор был очень прост по конструкторскому оформлению, удобен в эксплуатации, а главное - готовым к действию в любое время.

Радиолокация

Практические рекомендации А.Ф. Иоффе, были подкрепленны теоретическими разработками таких академиков, как Н.Д. Папалекси, Л. И. Мандельштамма, и В. А. Фока, нашли применение в реализации идеи по радиообнаружению самолетов. Потребности обороны страны была поставлена задача перед физиками - создать такую технику, которая могла бы позволить осуществить точное и быстрое обнаружение воздушных целей на дальнем расстоянии от гражданских и военных объектов, которая б не зависела от состояния погоды.

Данная проблема успешно была решена за участии А.Ф. Иоффе. Одна из первых отечественных радиолокационных установок была создана в лаборатории знаменитого академика Ю.Б. Кобзарева, она позволила обнаруживать и пеленговать самолеты врага в пределах расстояния от 90 до 150 км. Что дало возможность значительно быть подготовленными к защите и отражению воздушных атак врага, давая возможность дать мощный и своевременный отпор попыткам прицельного бомбометания по запланированным объектам врагом. Благодаря надежной и правильно настроенной работе радиолокаторов, только над столицей враг потерял около 1300 своих самолетов.

Вклад ученых в области металловедения и металлургии

Значительную отдачу и помощь в сражениях оказали разработки ученых в области металловедения и металлургии. Труды известного академика Верещагина Л. Ф. дали возможность создать первую в мире установку по упрочению стволов минометов, а также других артиллерийских систем, в них был применен принцип действия сверхвысоких давлений на кристаллическую структуру металла. Данная установка позволила увеличить срок службы орудий, дальность их стрельбы, а так же применять менее качественные сорта стали, для их изготовления.

Вологдиным В. П. был разработан способ закалки металлов токами высокой частоты. Что имело, огромную роль в увеличении количества выпуска танков, так как данный метод существенно уменьшает время нагрева стали, что дает возможность отказаться от дорогих и дефицитных сортов металла. Производительность труда в термообработочных операциях снарядов возросла в 30-40раз.

Академиком Патоном Е. О. был предложен метод скоростной автоматической сварки металлов под слоем флюса, который позволял лист стали толщиной в 35 мм сваривать в 30 раз быстрее, по сравнению с ручным способом, экономя на этом порядка 90% рабочей силы.

Танкоград

Танкоград. Этого города не было на карте, но о нем постоянно сообщалось во всех сводках Совинформбюро, о нем знал каждый солдаты на фронте.

Уральский Кировский завод, который называли в годы войны в народе Танкоградом. В очень малые сроки завод стал одним из основных арсеналов фронта.

Конструкторское бюро Танкограда возглавлял Ж. Я. Котин - известный и талантливый конструктор, но так, же и прекрасный организатор. За долгие годы войны Котиным Ж.Я, а так же и его коллективом были разработаны и созданы 13 типов боевых машин, 48 тысяч танковых дизель - моторов, выпущено 18 тысяч танков и самоходных установок, 17 миллионов заготовок боеприпасов. Впервые в мировой практике танкостроения сборка тяжелого танка была поставлена на конвейер.

Заводы Танкограда дали фронту:

каждый третий снаряд;

каждый второй танк.

Идет война. Фронту требуется увеличения эффективности огня артиллерии, повышения точности стрельбы оружия, это очень важная проблема. В этом направлении успешно работает, и решает задачи академик Колмогоров. А. Н. Колмогоров, родился 25 апреля 1903 г. в г. Тамбове в семье агронома. В период войны Андрей Николаевич по заданию главного артиллерийского управления, используя свои работы по математике в области теории вероятностей, дал определение наиболее эффективно выгодного рассеивания артиллерийских снарядов. Полученные им результаты, в значительной степени, помогли повысить точность стрельбы и тем самым усилить мощь и действия артиллерии, которую справедливо называли «богом войны». Его разработки по математической теории вероятностей были использованы для определения лучших методов нахождения самолетов, подводных лодок противника и для указания путей, а так же позволяли избежать встречи с подлодками врага. Во всем этом огромная заслуга математической, школы академика А.Н. Колмогорова.

Ученые блокадного Ленинграда для обороны родного города.

Для решения оборонных научно - технических задач и вопросов в осажденном фашистами г. Ленинграде была созвана особая группа знаменитых ученых, возглавлял которую директор Ленинградского физико- технического института Академии наук СССР академик А. Ф. Иоффе. По поставленной задаче Ленинградского горкома партии в данном институте была создана достаточно дешевую и эффективную зажигательную смесь, которая уничтожила десятки, а то и сотни танков врага, были разработаны новые подрывные противотанковые средства и защиты. Так же простые и удобные в применении термо электрогенераторы, которые были сконструированные Иоффе и работали от обычных керосиновых ламп, широко использования нашли в партизанских радистов.

Текст из соченения:

Потомок, знай,

В суровые года

Верны народу, долгу и Отчизне,

Через торосы Ладожского льда,

Отсюда мы вели дорогу жизни,

Чтоб жизнь не умирала Никогда.

Ольга Бергольц..

Вклад ученых в создание изветсной «дороги жизни» по Ладожскому озеру.

В Москве и блокадном Ленинграде били, разработана уникальная идея по построению дороги по льду Ладожского озера - так называемой «Дороги Жизни». В ноябре 1941 года озеро замерзло. По нему было прекращено движение судов. Наши отважные воины проложили по льду озера дорогу для автомашин. «Дорогой Жизни» была названа людьми этот опасный путь, по которому в любой период дня и ночи шли автомашины в осажденный фашистами Ленинград. Не для кого не секрет, что где-то лед и не выдерживал, машины проваливались под лед. И тут весомое слово сказали и пришли на помощь воинам, и простым людям физики и математики. Обеспечение надежности ледяной дороги через Ладожское озеро поручили составу ученых Ленинградского физико-технического института, которую возглавлял член - корреспондентом АН СССР П. П. Кобеко. Это представлялось очень сложным делом. Учеными было изучено свойства ледяного покрова, грузоподъемность, его вязкость и были установлены правила движения колонн машин по льду, благодаря которым дорога смогла работать без аварий. А уже в конце 1942 г., когда была начата подготовка к прорыву блокады, они подсчитали, какой режим движения танков может выдержать лед. На лед выходили целые танковые части.

И.В. Курчатов - один из организаторов научных исследований на службу обороны.

На гранитном обелиске, который установлен в г. Севастополе в память про общую работу моряков и ученых по размагничиванию кораблей есть имя И. В. Курчатова. В апреле 1942 г. за проделанную работу он был награжден Сталинской премией. В 1943г. Курчатов был награжден орденом за оборону г. Севастополя.

Так же, очень многое сделал Курчатов и коллективы под его руководством для приближения Дня Победы в войне. Наше правительство, зная о желании гитлеровской Германии создать атомное оружие, в 1943г. дали указание ученым возобновить ядерные исследования. В Москву с линии фронта отозванными были Курчатов и другие ученые атомщики. В след за этим в Москве был создан атомный институт, в котором под руководством И. В. Курчатова началась разработка и создание ядерного оружия. Курчатов привлекал к работе над атомным проектом самых толковых физиков и математиков: Ю.Харитона, Я. Зельдовича, Л. Ландау, М. Келдыша, а также много других выдающихся ученых. Уже после окончания войны нашими учеными было проделано очень много работы направленной на укрепление обороноспособности страны. Их усилиями, которыми руководил академик Курчатовым, было сделано советское атомное и термоядерное оружие, что ликвидировало атомную монополию американцев. Мир, на то время, был лишен атомного шантажа со стороны американцев. Но не надо думать, что во время войны, или после ее окончания наша наука жаждала только военного превосходства. Наши ученые, понимали и, предвидя опасность ядерного оружия, стремились переубедить человечество в возможностях мирного применения атома.

К научным работам в направлении атомной энергии Курчатов привлекал большое количество умнейших ученых, таких как: лауреата Государственной премии, члена - корреспондента академии наук СССР М. А. Михеева. Он был предан науке, самозабвением в труде Михеев не уступал своему сверх требовательному руководителю. Помнятся опыты Михеева по теплоотдаче от расплавленных металлов, которые получили наивысшую оценку академика Курчатова.

Также стоит отметить таких ученых как:

корреспондент АН СССР Н. Г. Четаев который, решил сложную задачу по определению более выгодную крутизну нарезки стволов, что дало возможность обеспечить максимальную кучность боя и то, что снаряд не переворачивается при полете.

П. Л. Капица работает в Казани в тяжелых условиях эвакуации над новыми методами достижения низких температур и создает самую мощную в мире установку для получения жидкого кислорода в больших количествах. Которая уже в конце 1941 г. эта установка стали получать в госпитали, где ее использовали для лечения раненых бойцов.

С. И. Вавилов и руководящие им сотрудники в 1942 году лаборатории люминесценции, были разработаны средства и методы светомаскировки военных объектов. Эти новые средства сразу были отправлены на авиационные и пороховые заводы. В широком использования они были применены при маскировке пристаней на Волге во времена Сталинградской битвы. Кроме этого, также были выполнены специальные оптические устройства для введения прицельного огня в темное время суток.

в г. Тамбове в годы войны хирургом - консультантом военного госпиталя был знаменитый хирург, почетный профессор медицины, одновременно, архиепископ Тамбовский и Мичуринский Лука. Ученый, хирург, богослов, священник, общественный деятель - таким он вошел в историю России. Человек с золотыми руками и отзывчивым сердцем, таким он остался в памяти старожилов Тамбова.


Заключение


Победа над фашистскими захватчиками была во многом достигнута благодаря развитию науки, разработке и созданию новых совершенных технологий.

Наши ученые сделали существенный вклад в решение таких оборонных, и не только, проблем, как:

-более совершенных оптических приборов для авиации, артиллерии, танков и подводных лодок,

-создание новых взрывчатых веществ и бронебойных снарядов,

-высокопрочной брони для танков,

-усовершенствование радиоаппаратуры и радиолокационных устройств,

-увеличение скорости и дальности полета самолетов,

-новые способы получения горючего и пластмасс и т.д.

Кроме военных разработок, существенный вклад в победу над фашистскими захватчиками внесли и нашие ученые в таких отрослях как медицина, химия, биология, физика, сельское хозяйство и многие другие. Годы Великой Отечественной войны были временем весомого подъема творческой мысли не только в ученых, но и в оригинальных и смелых решений инженеров, конструкторов, рабочих.

Ученые все свои силы и стремления направляли на помощь фронту, и не только этот касается своей научной работой в институтах и лабораториях. Все, начиная от лаборанта и заканчивая академиком, были постоянными участниками субботников: разгружали вагоны и баржи, грузили уголь, расчищали от снега посадочную полосу аэродрома…

Наша наука в времена войны - это тяжелый и длительный труд тысяч ученых в условиях смертельной опасности, беззаветный труд служащих, научно-технической интеллигенции на пределе физических и духовных сил, зачастую в условиях холода и голода. В целом суммарный вклад науки равнялся победе.

Хотелось бы в работе упомянуть всех ученых - физиков, химиков, математиков, механиков, чьи тяжелые труды помогли нам отвоевать свободу и независимость нашей Родины и спасти человечество от угрозы фашистского порабощения, да разве это возможно?

«Действительно ли, что любая война, помимо разрушений, несёт в себе и созидательную функцию?» стало и наше исследования, которое подтвердило: что, война - это безумно страшная разрушительная сила, но война заставила и созидать. Даже, сами немцы после окончания войны подтвердили, то, что наша техника и наука были на высоте требований, которые были предъявлены на то время.

Как написал один из президентов Академии наук СССР знаменитый физик академик С.И. Вавилов:

«Советская техническая математика и физика с честью выдержали суровые испытания войны. Следы этих наук всюду: на самолете, танке, на подводной лодке и линкоре, в артиллерии, в руках нашего радиста, дальномерщика, в ухищрениях маскировки».

Но как бы хотелось, чтобы созидательная сила науки была направлена на осуществление только мирных целей.


Список использованных источников


1.Дмитриенко В. П. История отечества. ХХ век.: Пособие. В. Д. Есаков, В. А. Шестаков. - М.: Дрофа, 2002. - 640 с.

.История Великой Отечественной Войны Советского Союза 1941-1945: Краткая история / под ред. Поспелова П. Н. - М.: Наука, 1975. - 631 с.

.История Отечества. Часть 2: Лекции для студентов/Под редакцией М. В. Зотовой. - 2-е изд., - М.: Изд-во МГУП, 2001. - 208 с.

.Ланге К. Физиологические науки в СССР. Становление. Развитие. Перспективы / К. Ланге. - Л.: Наука, 1988. - 479 с.

.Левандовский А. А. Россия в ХХ веке: Учебник /А. А. Левандовский, Ю. А. Щетинов. - 5-е изд. - М.: Просвещение, 2001. - 368 с.

.Макаренко В. П. Этатизация науки: Советский опыт /В. П. Макаренко // Правоведение. - 2006. - № 2. - С.207-236.

.Широков Г. А. Научные изыскания ученых сельскохозяйственной науки в годы Великой Отечественной войны. 1941-1945 гг. / Г. А. Широков. - М.: СамГУ. - 2007. - №5/3. - С.55.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

January 30th, 2017

Во время войны все ученые с величайшей готовностью включились в борьбу с фашизмом. Каждый считал делом своей чести и долга сделать все, что в его силах. О мужестве воинов, защищавших город, о беспредельной стойкости гражданского населения, выдержавшего нечеловеческие испытания в блокаде, написано много и еще немало напишут.

Подвиг Ленинграда нельзя понять до конца, если не учитывать и роль ученых в его обороне. Люди науки в самых невероятных, труднейших условиях искали и находили новые средства и ресурсы для борьбы с врагом. Даже тогда, когда, казалось, все возможности физически исчерпаны... И часто совершали такое, что, казалось бы, превосходило человеческие возможности.

Пример тому каталитическая грелка , которая была создана в конце 1939 года, когда шли бои на Карельском перешейке. Стояли необычно злые морозы, многие бойцы обмораживались и выходили из строя. Нужно было быстро создать “нечто маленькое, компактное, обогревающее”. И вот коллективными усилиями была сотворена эта знаменитая грелка. Промышленность в очень короткий срок освоила массовое производство. Эта грелка спасла жизнь многим нашим воинам и в войну с белофиннами, и в годы Великой Отечественной войны.

Из какого цемента лучше делать противотанковые надолбы ? Они должны выдержать, не крошась и не ломаясь, вес многотонных бронированных машин, а вместе с тем на их изготовление нельзя тратить лишнее сырье,— его и так не хватает. Ученые Института коммунального хозяйства очень быстро дали свои рекомендации, а потом отправились на строительные полигоны и там практически внедряли лучшие методы сооружения бетонных противотанковых пирамид.

В Физтехе была создана база для испытания новых образцов боевой техники, разрабатывались способы сделать землю, из которой возводятся укрепления, водонепроницаемой. В Институте железнодорожного транспорта испытывали рельсы, балки, стальные плиты, подбирали материал, из которого лучше и быстрее можно сваривать противотанковые ежи, делать покрытия для дотов. Многие укрепленные районы вокруг Ленинграда проектировали академики и профессора архитектуры, они зачастую и руководили самими работами. Среди этих ученых были и академик Б. Г. Галеркин, автор теории оболочек, выдающийся ученый-строитель, и М. А. Шателен — выдающийся советский электротехник, член-корреспондент Академии наук СССР.

Осенью сорок первого года многие ленинградцы носили небольшие значки, фосфоресцирующие в темноте как светлячки. Они помогали людям ориентироваться на темных улицах. Откуда взялись такие значки в блокированном городе, мало кто задумывался, — были заботы поважнее. А чтобы получить эти кружочки, покрытые светящимся составом, ученым тоже пришлось немало поработать. Но главное заключалось в другом. Значки сравнительно мелочь. Светящиеся составы требовались, прежде всего, для многочисленных приборов — зенитчикам, артиллеристам-полевикам, морякам-балтийцам. На фронте и в блокированном городе зачастую нельзя было освещать приборы в ночное время. Даже карманный фонарик или “летучая мышь” могли демаскировать, привлечь внимание врага, вызвать обстрел и бомбежку. А как разглядеть, что показывают приборы: в темноте? Тут-то и помогали светящиеся составы, которыми покрывали стрелки или шкалы приборов на кораблях, на батареях. Производство светящихся составов во время блокады организовал в Радиевом институте известный физик профессор А. Б. Вериго . Он и его сотрудники произвели множество экспериментов, прежде чем нашли то, что требовалось. Однако, чтобы постоянно выпускать светящиеся составы в должном количестве, нужен был определенный запас солей радия. В городе таких запасов не сохранилось. Сотрудники института стали добывать радий с поверхности стен, с полов и потолков тех комнат, где раньше применялся радий для научных исследований, пустили в дело отходы. И они обеспечили светосоставами фронт.

О героическом труде ученых в годы блокады придется говорить не раз. В астрофизическом институте младшим научным сотрудником работала Елена Петровна Бутыркина . В ее ведении находились различные семена овощей и посадочный картофель, пригодные для питания, но Елена Петровна не воспользовалась ими. Она отобрала картофель, который следовало высадить весной, и бережно хранила весь посевной материал, спасала его от замерзания. Кое-какие излишки Бутыркина раздавала своим ослабевшим товарищам. Бывало, достанет из сумки, с которой не расставалась, пару картофелин или луковицу, сунет товарищу незаметно и уйдет. Именно такое поведение было характерно для многих ленинградцев. Мы знаем не один случай, когда люди умирали от голода, но не воспользовались научными ценностями, не извлекли из них выгоды, чтобы спасти себя. Они думали о будущем, о науке, чьи интересы были для них дороже собственной жизни.

В Ленинградском институте растениеводства, например, имелась уникальная коллекция семян зерновых культур, собранная под руководством академика Н. И. Вавилова . Она состояла из 100 тысяч образцов. Только образцов пшеницы насчитывалось 38 тысяч. Каждый образец — мешочек с зерном. Работники института, оставшиеся в Ленинграде, страдали и умирали от голода, но сумели сохранить драгоценные образцы.

В здании Института химической физики, находившемся по соседству с Физтехом, размещалась воинская часть. Первая блокадная зима была очень холодной — морозы достигали 35 — 40 градусов. Вдобавок еще голод делал людей особенно чувствительными к низкой температуре. Бойцы мерзли, из-за отсутствия топлива они стали растапливать печурки книгами из институтской библиотеки. Часть ее погибла. Погибло бы, вероятно, все, не узнай о происходящем библиотекарь Физтеха Наталья Федоровна Шишмарева . Она стала спасать книги. Одна на детских саночках перевезла множество томов в библиотеку Физтеха, которую сохраняла в неприкосновенности всю войну. Некоторым ведь порой казалось: стоит ли думать о книгах, когда гибнут люди...

И вот ведь что главное — люди тратили энергию, прежде всего на работу, на то, что было нужно в борьбе с врагом. Именно это спасало людей. Те, кто самоотверженно делал свое дело, забывая обо всех страданиях и невзгодах, выпавших на их долю, держались крепче, чем те, кто падал духом. Пассивные, отчаявшиеся становились первыми жертвами голода и болезней.

В Ленинграде и Кронштадте во время войны действовало несколько станций по размагничиванию боевых кораблей . Все они были созданы учеными Физтеха, которые их и обслуживали. Научные сотрудники размагничивали корабли в боевых условиях, разбирали магнитные системы вражеских мин, давали инструкции по их обезвреживанию, конструировали траловые устройства для вылавливания мин в море. В этой группе сотрудников Физтеха работали и женщины, среди них Валентина Иоффе , дочь академика А. Ф. Иоффе. Не все остались живы. На боевом посту погиб и наш старший научный сотрудник Н. Л. Писаренко , талантливый ученый, добрый товарищ.

Уже в начале вражеской блокады на Ленинградском фронте имелись радиолокационные установки . Не многим известно, что первый в мире радиолокатор создал в 1934 году в ленинградском Физтехе выдающийся ученый Д. А. Рожанский. В самом начале войны радиолокационные установки были еще несовершенны, но все же только они одни и могли “увидеть” самолеты, летевшие бомбить Ленинград. Ведь фронт проходил у стен города, а радиолокаторы засекали самолеты еще за десятки километров от передовой.
Для радиолокации потребовались специальные высокочастотные кабели . Образец коаксиального высокочастотного кабеля раздобыли на трофейной подводной лодке. Изоляция его была сделана из стирофлекса, который у нас тогда не изготовлялся. Задумали заменить стирофлекс другим диэлектриком — эскапоном, который до войны был создан в Физтехе. Изготовить сложное изделие поручили заводу “Севкабель”. Его директор Д. В. Быков и весь заводской коллектив приняли это задание как важнейшее дело, взялись за него охотно и энергично. Но условия были тяжелые — первая блокадная зима...
Вместе с работниками технического отдела завода налаживали массовое изготовление эскапоновых изоляторов, придумывали рациональные пресс-формы, конструировали различные приспособления. Были изготовлены два образца высокочастотного кабеля — один на изоляции из эскапоновых шайб, а другой — на эскапоновых колпачках. Испытали их. Велика оказалась наша радость, когда кабель на эскапоне, сделанный ценой многих трудов и мук в зимнем, блокированном Ленинграде, получился по всем данным не хуже, чем трофейный кабель на стирофлексе. Трудная задача была решена.
Сведения о том, что в блокадном Ленинграде изготовлен высокочастотный кабель на отечественной изоляции, быстро дошли до оборонных предприятий на Большой земле. Оттуда стали поступать просьбы изготовить эскапоновые детали. Радиолокационные установки требовались и на фронте, и в тылу, а без высокочастотного кабеля они не работали.

Как-то зимой Санитарное управление фронта обратилось в институт за консультацией: какое лучше использовать средство для лечения газовой гангрены. Дело в том, что у некоторых раненых бойцов стало развиваться это страшное заболевание. Институтский химик М. В. Гликина сумела помочь врачам, спасавшим жизнь людей.
В городе имелись некоторые запасы красок, изготовленных на растительных маслах. Без краски можно было пока обойтись, а вот если бы удалось извлечь из нее масло, то это послужило бы определенным подспорьем для голодных людей. Наши физики и химики довольно быстро нашли способ превращения красок в пищу. В городе начали работать установки, извлекавшие из этого неожиданного “сырья” съедобное масло. Правда, запах краски в масле сохранялся, но кто в блокаде обращал внимание на подобные пустяки.

И сколько таких и куда более трудных, неожиданных задач ставила перед учеными и техниками необычная обстановка блокированного города! Откуда же все-таки брались снаряды, мины, авиабомбы в то время, когда Ленинград их не мог получить из глубины страны? Они делались в самом городе. Из чего? Из материалов, которые раньше совершенно не предназначались для такой цели. Нафталин , например, служил всегда, чтобы убивать моль, а во время блокады он стал исходным материалом для производства... взрывчатки. Целлюлоза , шедшая для производства бумаги, стала использоваться для изготовления пищевых дрожжей и как добавка к хлебу. Это не был полноценный продукт, но все же человеческий организм получал с ним какое-то количество питательных веществ.

Блокадники помнят грузовики с высокими металлическими цилиндрами, похожими на ванные колонки. Это были газогенераторы , где сгорали деревянные чурки. Полученный из них газ заменял бензин. Вскоре выяснилось, однако, что и перевод автомобилей с бензина на дровяное топливо тоже не окончательный выход. Не хватало сухих дров, чтобы пилить их на чурки.

. Тогда ученые предложили прессовать горючие кубики из опилок, добавляя к ним клеящий состав. В городе не было кокса. Ученые нашли способ плавить металл для снарядов и мин на термически обработанном антраците и торфе . Перестал поступать песок для формовочных земель — решили добывать его в черте города, а отработанные земли научились использовать вторично. Горючее для боевых самолетов извлекали из низкосортного топлива, смазочные материалы — из отработанных масел...

Жестокая нужда заставляла постоянно придумывать, находить выходы из самого трудного положения. Одно время блокадный Ленинград испытывал острый недостаток кислорода, а он был нужен для самых разных целей — и для спасения тяжелораненых, и для ремонта боевой техники. Получение кислорода удалось организовать на заводе имени Жданова , находившемся неподалеку от передовой. Завод почти непрерывно обстреливался. Фашистам даже не требовались дальнобойные орудия — до цехов они доставали и обычными полевыми пушками. Тем не менее, жизнь на заводе продолжалась, люди трудились, не покидая своих рабочих мест. Потом была пущена кислородная установка на Балтийском заводе, тоже подвергавшемся жестоким обстрелам.

На заводе им. Урицкого главным тогда были не папиросы, а снаряды, которые изготовлялись на фабрике в механическом цехе. Но и в куреве мы тоже нуждались, а запасы табака быстро истощались. Работники фабрики предложили добавлять в папиросы табачную пыль и даже сухие листья, собранные в городских парках. Конечно, дубовые и кленовые листья служили слабой заменой табака, но курильщики в городе и на фронте мирились с этим суррогатом. Папиросам они давали разные прозвища: “Матрас моей бабушки”, “Наша марка из вашего парка” и тому подобные.

Сотрудники Института морского флота придумали простой прибор, которому дали название “карманный перископ”. Прибор состоял из двух маленьких зеркал (40 Х 40 миллиметров), заделанных в раздвижное приспособление. В сложенном виде он умещался в кармане гимнастерки, а раздвинуть его можно было на треть метра. Перископ позволял бойцам вести постоянное наблюдение за противником, видеть все, что делается в поле, не поднимая головы из окопа, и, таким образом, застраховать себя от снайперских пуль противника. Производство карманных перископов было организовано в блокадном Ленинграде.

(Из книги Н. Рейнова “ Физики - учителя и друзья”)

=Arctus =

Recent Posts from This Journal


  • БЫЛ ЛИ ГЕНОЦИД РУССКОГО НАРОДА В СССР?

    Самое яркое политическое шоу 2019 года! Первые клубные дебаты SVTV. Тема: «Был ли геноцид русского народа в Советском Союзе?» Дебатируют русский…


  • М.В ПОПОВ VS Б.В. ЮЛИН - Фашизм на экспорт

    Дебаты на тему "Фашизм на экспорт" между профессором Поповым и военным историком Юлиным Проголосовать о том кто победил по вашему…

Мы должны преклоняться перед выдержкой, смелостью, самоотверженностью и верностью, которую проявляли ученые-воины нашей родине. Но не стоит забывать и о другом вкладе ученых, инженеров, физиков, математиков, медиков, химиков в победу нашего народа над захватчиками, сильным и коварным врагом. Было понятно, что не только храбрость армии, число пушек и искусство маршалов могло определить успешный исход военных действий: он в значительной степени так же зависит от качества вооружения, его совершенства, новизны и прочее.

Нужно было в максимально краткий промежуток времени создать технику, которая должна превосходить технику врага по всем параметрам. И эта сложная и ответственная задача легла на плечи советских ученых и конструкторов, проведя невидимую линию фронта через научные конструкторские бюро, лаборатории: там, так и на линии огня, ишел непрерывный процесс, напряжение “сражение мыслей”, которые рождались и воплощались в будущем в металл и научно-технические идеи История Великой Отечественной Войны Советского Союза 1941-1945: Краткая история / под ред. Поспелова П.Н. - М.: Наука, 1975. с. 311-312..

Так какие же математические задачи для фронта и тыла пришлось решать ученым военного времени?

Из энциклопедий, литературных источников, интернет ресурсов мы многое узнали о фактах великого вклада российских ученых во имя победы.

Остановимся более подробно об основных достижения науки и ученых во время Великой Отечественной войны Ланге, К. Физиологические науки в СССР. Становление. Развитие. Перспективы / К.Ланге. - Л.: Наука, 1988. 240-241 с.:

Авиации.

В годы войны техника была сложной и разнообразной. К ее использованию требовалось широкое знание и использования математических расчетов для ее изготовления и дальнейшей эксплуатации.

Достижения отличных результатов в совершенствовании боевых самолетов позволило А. С. Яковлеву и его товарищу С. А. Лавочкину создать и изготовить грозные истребители, С. В. Илюшину - неуязвимые штурмовики, А.Н. Туполеву, Н. Н. Поликарпову и В. М. Петлякову - мощные бомбардировщики.

Но, при получении больших скоростей, авиаконструкторы столкнулись с неизвестными раньше явлениями в управлении и поведении самого самолета. В некоторых режимах работы моторов в конструкциях произвольно возникало возбуждение, и отметим, что с довольно большой амплитудой, и данное явление, которое получило название флаттер, вело к разрушению самолета в воздухе. Опасности, так же, подстерегали эти скоростные машины и на земле. При взлете и посадке самолета колеса самопроизвольно могли вилять из стороны в сторону, данное явление, получило название шимми, оно довольно часто вызывало катастрофы самолетов на аэродромах. Выдающийся математик тех времен М. В. Келдыш, при поддержке возглавляемым ним коллектив ученых занялись исследованием причины флаттера и шимми Дмитриенко, В.П. История отечества. ХХ век.: Пособие. В. Д. Есаков, В.А.Шестаков. - М.: Дрофа, 2002. с. 448-449..

Созданная учеными математическая теория данных опасных явлений дала возможность советской авиационной науке вовремя защитить конструкции скоростных самолетов от появления таких вибраций. Ученые дали большое количество рекомендации, которые необходимо было учитывать при конструировании подобных самолетов. Как результат наша авиация во время войны не знала случаев разрушения самолетов по причине неправильного расчета конструкций, этим были и спасены жизни большого количества летчиков, а также боевые машины воздуха.

Цель игры: На основе соревновательной игры активизировать умения и знания обучающихся, полученные на уроках физики и истории, показать взаимосвязь этих наук.

Задачи игры :

    Научить учащихся самостоятельно работать с дополнительной литературой по заданной теме.

    Выработать у учащихся умение отвечать на нестандартные вопросы.

    Поднять престиж умных, но не всегда популярных в классном коллективе обучающихся.

    Вовлечь в творческую работу по физике как можно большее число обучающихся.

    Выработать у обучающихся чувство патриотизма и гордости за отечественную науку.

Оснащение:

Стендовые доклады по темам:

    Нам разум дал стальные руки-крылья…” (о вкладе ученых-конструкторов в совершенствовании авиации);

    Идеальные связисты” (о вкладе ученых в развитие средств связи в годы войны);

    Невидимые мстители” (о работе ученых-физиков в партизанских отрядах);

    За рекою грянула “Катюша” по врагу лавиной огневой” (о создании нового вида оружия);

    кодоскоп или проектор;

    портреты ученых-физиков;

    жетоны.

Вопросы к викторине “Физики - фронту”:

    Под руководством какого ученого в годы войны осуществлялись работы по защите кораблей от магнитных мин?

    Какой метод он разработал совместно с Курчатовым и Тучкевичем? (этот метод в годы войны имел эффект в применении).

    В 1941 году построил теорию звуковых явлений в движущихся и неоднородных средах, получив уравнение акустики самого общего вида. Назовите фамилию ученого.

    Какую работу в годы войны осуществил Векслер Владимир Иосифович?

    В каком году Вул Бенцион Моисеевич открыл и исследовал сегнето-электрические свойства титанита бария, чем положил начало созданию нового класса диэлектриков, широко используемые в современной технике?

    Какую работу в годы войны вел Гершун Андрей Александрович?

    В годы войны Гуревич Исай Израилевич провел общее теоретическое рассмотрение гетерогенных систем с блоками урана с учетом резонансного поглощение нейтронов. Назовите год и фамилию ученого, совместно с которым проводились эти исследования?

    Расскажите о деятельности Курчатова в годы войны.

    В каком году Петр Георгиевич Стрелков разработал технологию производства бактериологического оружия?

    Что нового внес в советскую науку Евгений Львович Фейнберг в годы войны?

    Назовите заслуги Флерова Георгия Николаевича в годы войны.

    Назовите фамилии ученых и конструкторов, внесших вклад в совершенствование авиации в годы войны?

    Какие разработки были предложены в годы войны учеными и конструкторами для совершенствования самолетов?

    Назовите несколько работ ученых в помощь партизанам.

    Кто из ученых был в отрядах партизан и оказывал помощь в изобретениях?

    Рассказать о деятельности партизан-изобретателей (о 2 - 3-х).

    Назвать новые виды оружия, созданные в годы войны.

    В каком году “Катюша” вступила в бой?

    Назвать фамилии ученых - блокадников.

    Какой вклад внесли ученые Ленинграда в “Дорогу жизни”?

    Какой вклад сделали ученые Ленинграда в дело обороны города?

    Назвать города, куда были эвакуированы НИИ оборонного значения.

    Назвать города, где выпускались “Катюши” и “Т-34”.

    Назвать города, где есть памятники этим видам оружия.

    Александров, А. П. Славный путь советской науки [Текст] / А.П.Александров.- ж.Техника молодежи, - 1983.- № 9.

    Андреев. Боевые самолеты [Текст] / Андреев. - М.: “Молодая Гвардия”, 1981.

    Волгин. Саперы морских дорог [Текст] / Волгин.- ж. “Юный техник”. – 1984.- №8.

    Кикоин, И.К. Физики – фронту [Текст] / И.К. Кикоин. ж. “Физика в школе”. -1995. - № 3.

    Кольцов Ученые Ленинграда в дни блокады. [Текст] / Кольцов.–Москва:“Академия наук СССР”, 1962.

    Кузнеца Победы: Подвиг тыла в годы Великой Отечественной войны [Текст]– Москва: Политиздат, 1980. – c.423.

    Левшин Академия наук СССР в годы Великой Отечественной войны [Текст] /Левшин– Москва: “Наука”, 1974. - c. 24-74.

    Маркелова Линия научной обороны [Текст] / Маркелова ж. “Знамя”.- 1984. - № 5,6.

    Молишевский. На энском тракторном заводе [Текст] / Молишевский. ж.“Наука и жизнь”. –1984.- №11.

    Регель, Ткаченко Размагничивание кораблей в годы Великой Отечественной войны [Текст] / Регель, Ткаченко. ж. “Квант”. –1980. - №5.

    Сборник Оружие Победы. 1941-1945: Сборник / Худ. Иванов. – М.: “Молодая Гвардия”, 1975.

    Советский тыл в годы Великой Отечественной войны. - Книга 2: Трудовой подвиг народа [Текст] - Москва: изд. “Мысль”, 1974.

    Федотов Техника в годы войны [Текст] / Федотов. М.: Изд. “Знание”, 1970.

    Фокин Подвиг советской науки [Текст] / Фокин. ж. “Политическое самообразование”. – 1985.- №1.

    Шмелев Знаменитая 34 [Текст] / Шмелев. ж. “ Техника”.

Ответы на вопросы к викторине “Физики – фронту”

    Работы по защите кораблей от магнитных мин осуществлялись под руководством Александрова Анатолия Петровича.

    А.П. Александров совместно с И.В. Курчатовым и В.М. Тучкевичем разработал метод противоминной защиты кораблей.

    Построил теорию звуковых явлений в движущихся и неоднородных средах, получив уравнение акустики самого общего вида, Блохинцев Дмитрий Иванович.

    Векслер Владимир Иосифович открыл важный для дальнейшего развития и прогресса ускорительной техники принцип автофазировки и, исходя из него, предложил ряд новых типов ускорителей.

    Вул Бенцион Моисеевич открыл и исследовал сегнетоэлектрические свойства титанита бария, чем положил начало созданию нового класса диэлектриков, широко используемых в современной технике в 1944 г.

    Андрей Александрович Гершун ввел понятие эквивалентной яркости в 1942 г. Исследовал распространение дневного и искусственного света в толще моря, развил общую фотометрическую теорию прохождения света через мутные среды. Является основоположником советской гидрооптики.

    Гуревич Исай Израилевич в 1943 г. с Исааком Яковлевичем Померанчуком провел общетеоретическое рассмотрение гетерогенных систем с блоками урана с учетом ре резонансного поглощения нейтронов.

    Игорь Васильевич Курчатов в 1941 г. вместе с А.П. Александровым работал над проблемой противоминной защиты советских кораблей. С 1943 г. возглавлял исследования по овладению ядерной энергией, принимал участие в проведении эксперимента.

    Петр Георгиевич Стрелков разработал технологию производства бактериологических фильтров в 1943 г.

    Фейнберг Евгений Львович впервые в 1941 г. указал на существование и возможную роль когерентных неупругих процессов. Впервые построил в 1943 г. метод – статистическую корреляционную теорию помехоустойчивости на фоне шума.

    Флеров Георгий Николаевич с конца 1942 г., когда в Советском Союзе были начаты работы по атомной проблеме, вместе с И.В. Курчатовым начал анализ и ее разработку.

    А.Н. Туполев, А.С. Яковлев, А.И. Микоян, С.В. Ильюшин, С.А. Лавочкин, В.М. Петляков С.А. Христианович и другие внесли огромный вклад в героическую борьбу Советской Армии с фашистскими захватчиками и Победу над ненавистным врагом в области авиации, в авиационном двигателестроении – А.А. Микулин, В.Я. Климов, А.Д.Швецов и другие.

    Академик С.А. Христианович теоретически решил задачу определения аэродинамической характеристики крыла самолета при переходе к полету на больших скоростях. Его исследования имели большое значение для решения проблем прочности самолета. Академик М.В. Келдыш разработал математическую теорию дистера и практические меры по ею устранению. Член-корреспондент АН СССР Н.Г. Четаев разработал метод расчета устойчивости самолетов при движении по земле, что дало возможность обеспечить их посадку и взлет с аэродромов, не имевших специального оборудованных взлетно-посадочных полос. Коллектив конструкторного бюро во главе с академиком С.В. Ильюшиным создал лучший в мире самолет – штурмовик Ил-2, не имевшим себе равного. Штурмовик Ил -10, выпущенный в 1944 г., имел лучшие аэродинамические показатели, усиленное вооружение и более мощную броневую защиту. Улучшили летные и боевые характеристики бомбардировщиков. Благодаря усилиям ученых конструкторов академиков А.И. Туполева, В.М. Петлякова и др. была доведена скорость бомбардировщиков с 445 км/ч до 600 км/ч.

    В годы Великой Отечественной войны специально для партизанских отрядов под руководством академика А.Ф. Иоффе был разработан термогенератор. Он служил источником электропитания для радиоприемников и радиопередатчиков.Такие генераторы обладали невысоким КПД (всего 1,5-2 %), они служили надежным источником тока и имели мощность, достаточную для работы переносной радиоаппаратуры. Их использование оказывало большую помощь партизанам, воевавшим в тылу врага.
    Анатолий Кочугин изобрел тол, который не обнаруживался миноискателем, всегда взрывался, нельзя было обезвредить. Внешне напоминал мыло. Партизаны крепили его под вагонами.
    Была проведена модернизация бутылок с зажигательной смесью.

    Семен Алексеевич Лавочкин создал новый быстроходный, маневренный, хорошо вооруженный истребитель Ла-5. Под руководством авиаконструктора Александра Сергеевича Яковлева на базе самолета Як-1 был спроектирован самый легкий (всего 2650 кг) и маневренный истребитель второй мировой войны - Як-3, истребитель Як-9, развивающий скорость до 605 км/ч; пикирующий бомбардировщик Ту-2 конструкции А.Н. Туполева (создан в 1943 г), поднимавший 3000 кг бомб и развивавший скорость до 547 км/ч; штурмовик Ил-10 конструкции С.В. Ильюшина (создан в 1944 г.) с мощным двигателем, усиленной броней и вооружением. В 1943 г. под руководством инженеров Ж.Я. Котина, А.И. Благонравова, Н.Л. Духова в сжатые сроки был создан новый советский тяжелый танк ИС-2. На базе танка ИС-2 в 1944 г. был создан ряд новых тяжелых самоходных артиллерийских установок, в том числе ИСУ-152, оснащенная гаубицей-пушкой 152-миллиметрового калибра. В начале 1942 г. коллектив под руководством Василия Гавриловича Грабина пополнил вооружение нашей армии новым мощным орудием – 76-миллиметровой пушкой ЗИС-3, ставшей самой массовой пушкой. В 1943 г. конструкторское бюро В.Г. Грабина создает 100-миллиметровую противотанковую пушку. Конструкторское бюро, возглавляемое Федором Федоровичем Петровым, создало 152-миллиметровую гаубицу, предназначенную для разрушения укрытых целей – оборонительных сооружений, блиндажей. Нашим артиллеристам в 1943 г. был передан на вооружение и 160-миллеметровй миномет – сравнительно легкое гладкоствольное орудие для стрельбы по очень крутой траектории мощными невращающимися оперенными снарядами (минами), которые могут поразить противника даже в траншее, на дне оврага. Гвардейский миномет БМ-13 (“Катюша”). В ходе войны ученые разработали новую рецептуру топлива для реактивных снарядов, теорию его горения и внутреннюю баллистику; ученые создали также в 1942 г.новые типы реактивных снарядов - М-20 и М-30; в 1943 г. появились фугасные реактиные снаряды М-31.В начале 1943 г. было испытано изобретение военного специалиста И.А. Ларионова – авиационная бомба кумулятивно-концентрированного (остронаправленного) действия, предназначенная для борьбы с танками. На фронтах Великой Отечественной войны широкое применение получили новые артиллерийские снаряды (названные “подкалибирными”), созданные советскими специалистами. Эти снаряды оказались весьма действенным средством в борьбе с бронетанковыми частями фашистской армии: они пробивали броню значительно большей толщины, чем обычные бронебойные снаряды того же калибра. Эффективность нового снаряда была связана с использованием чисто физического явления.
    Практические потребности обороны страны поставили перед советскими физиками важную научную проблему: создать новую технику, которая позволила бы осуществлять дальнее и точное обнаружение воздушных целей независимо от состояния погоды.
    В разработке нового метода, имевшего первостепенное значение для обороны страны, и создании отечественных радиолокационных установок принял участие ряд советских физиков: А.А. Чернышев, Н.Д. Папалекси, А.А. Лебедев, В.П. Линник, Ю.Б. Харитон, Д.А. Рожанский, Ю.Б. Кобзарев, Н.Д. Девятков и другие. Радиолокационная установка, созданная в лаборатории Ю.Б. Кобзарева, позволяла обнаруживать технику противника на значительных расстояниях.
    Противовоздушная оборона города Ленинграда не смогла бы своевременно подготовиться к отражению атак, если бы не была оснащена радиолокационными станциями.
    Радиолокационные станции использовались также для защиты легендарной “дороги жизни”. Радиолокационные установки охраняли и воздушное пространство на подступах к столице нашей Родины. Во время войны прожекторные части применялись в системе противовоздушной обороны страны. Группа ученых сконструировала совершенно новый высокочувствительный миноискатель, который обнаруживал “хитрые” - деревянные и пластмассовые - мины с помощью ультракоротких электромагнитных волн.
    Член-корреспондент АН СССР Н.Н. Андреев к концу 1942 г. придумал акустический трал - устройство, уничтожавшее еще один вид опаснейших мин - акустических, взрывавшихся под действием шума механизмов корабля.

    Знаменитая “катюша” была применена в бою 14 июля 1941 г. батареей капитана И.А. Флерова вблизи белорусской железнодорожной станции Орша.

    В создании реактивного оружия – артиллерийской установки “Катюши” участвовали ученые и конструкторы: Н.И. Тихомиров, В.А. Артемьев, Б.С. Петропавловский, Г.Э. Лангеман, И.Т. Клейменов и многие другие.

    Научный сотрудник ленинградского Физико-технического института Павел Павлович Кобеко, академик П.Л. Капица, В.А. Трапезников, физики Я.С. Шур, С.В. Вонсовский, ученые Института химической физики профессора Я.Б. Зельдович, Ю.В. Харитон, Л.Г. Лойценский.

    Физико-технический институт АН СССР участвовал в важнейшей операции- прокладке Дороги жизни по льду Ладожского озера из Ленинграда, сжатого кольцом блокады, на “Большую землю”. Группа ученых, возглавляемая членом- корреспондентом АН СССР П.П. Кобеко, изучила механические свойства ледового покрова - его прочность, вязкость, хрупкость, грузоподъемность, условия пролома, и на их основе разработала правила движения автоколонн по льду. Благодаря строгому соблюдению этих правил ледовая дорога “действовала” без аварий - не было случая разрушения льда из-за деформации и резонанса при движении транспорта. Следить за деформациями льда помогали специально сконструированные ученым Н.М. Рейновым приборы, получившие название “прогибографы”.

    Работники Центрального НИИ морского флота в Ленинграде, возглавляемые профессором А.В. Волокитиным, Ю.Б. Калиновичем, П.С. Козьминым, сконструировали специальные понтоны, обеспечивающие подход судов с большой осадкой к мелководным берегам.
    Группа сотрудниц Ленинградского радиевого института во главе с профессором А.Б. Вериго по заданию командования Балтийского флота разработала и изготовила светосоставы - светящиеся в темноте краски - постоянного действия. Ими покрывали стрелки и шкалы основных корабельных приборов - ориентирования, управления орудиями и торпедами, пеленга, что значительно повысило боеспособность кораблей в ночное время: исчезла опасность демаскировки, корабли могли действовать в полной темноте. Известный автор занимательных книг о физике, астрономии, математике Яков Исидорович Перельман ходил пешком через весь город Ленинград на курсы, где читал лекции партизанам, воинам-разведчикам Ленинградского фронта и Краснознаменного Балтийского флота об ориентировании без приборов на любой местности, в любую погоду, полагаясь только на “подручные” средства. Измерительными инструментами служили карандаш, палец руки, спичка, полоска бумаги, наручные часы, муравьиная куча, звезды и Луна, сучья на деревьях. Отвечая на многочисленные вопросы слушателей, он растолковывал физические основы дальнего меткого бросания гранаты, ведения прицельного огня, полета пуль, снарядов и мин, эффективного метания бутылок с зажигательной смесью.

    Михаил Ильич Кошкин - советский конструктор, руководил работой по созданию танка Т-34, который поставлен на вооружение Советской Армии в 1940 г.

    НИИ оборонного значения были эвакуированы в Магнитогорск, Челябинск, Нижний Тагил, Омск.

    Танки Т-34 выпускали 3 эвакуированных завода: Кировский из Ленинграда, дизельный из Харькова, а также находившийся в Челябинске тракторный завод- это было одно из крупнейших в стране танкостроительных предприятий, в народе называлось “Танкоград”, официальное название – Уральский Кировский танковый завод. 13 июля 1942 г. получил задание освоить массовое производство танков Т-34. 22 августа первый танк ушел на фронт.

    Памятники есть в городах Кемерово, Новокузнецке, в Челябинске, в Кишиневе, в Орше, в Тирасполе и других городах.