Расчеты по id диаграмме. Состояния воздуха и процессы на «i, d» – диаграмме влажного воздуха

Учитывая, что является основным объектом вентиляционного процесса, в области вентиляции приходится часто определять те или другие параметры воздуха. Чтобы избежать многочисленных вычислений, их определяют обычно по специальной диаграмме, которая носит название Id диаграммы. Она позволяет быстро определить все параметры воздуха по двум известным. Использование диаграммы позволяет избежать вычислений по формулам и наглядно отобразить вентиляционный процесс. Пример Id диаграммы приведен на следующей странице. Аналогом Id диаграммы на западе является диаграмма Молье или психрометрическая диаграмма.

Оформление диаграммы в принципе может быть несколько различным. Типовая общая схема Id диаграммы показана ниже на рисунке 3.1. Диаграмма представляет из себя рабочее поле в косоугольной системе координат Id, на котором нанесено несколько координатных сеток и по периметру диаграммы – вспомогательные шкалы. Шкала влагосодержаний обычно располагается по нижней кромке диаграммы, при этом линии постоянных влагосодержаний представляют вертикальные прямые. Линии постоянных представляют параллельные прямые, обычно идущие под углом 135° к вертикальным линиям влагосодержаний (в принципе, углы между линиями энтальпии и влагосодержания может быть и другим). Косоугольная система координат выбрана для того, чтобы увеличить рабочее поле диаграммы. В такой системе координат линии постоянных температур представляют из себя прямые линии, идущие под небольшим наклоном к горизонтали и слегка расходящиеся веером.

Рабочее поле диаграммы ограничено кривыми линиями равных относительных влажностей 0% и 100%, между которыми нанесены линии других значений равных относительных влажностей с шагом 10%.

Шкала температур обычно располагается по левой кромке рабочего поля диаграммы. Значения энтальпий воздуха нанесены обычно под кривой Ф= 100. Значения парциальных давлений иногда наносят по верхней кромке рабочего поля, иногда по нижней кромке под шкалой влагосодержаний, иногда по правой кромке. В последнем случае на диаграмме добавочно строят вспомогательную кривую парциальных давлений.

Определение параметров влажного воздуха на Id диаграмме.

Точка на диаграмме отражает некое состояние воздуха, а линия – процесс изменения состояния. Определение параметров воздуха, имеющего некое состояние, отображаемое точкой А, показано на рисунке 3.1.

I-d диаграмма влажного воздуха - диаграмма, широко используемая в расчетах систем вентиляции, кондиционирования , осушки и других процессов, связанных с изменением состояния влажного воздуха. Впервые была составлена в 1918 году советским инженером-теплотехником Леонидом Константиновичем Рамзиным.

Различные I-d диаграммы

I-d диаграмма влажного воздуха (Диаграмма Рамзина):

Описание диаграммы

I—d-диаграмма влажного воздуха графически связывает все параметры, определяющие тепловлажностное состояние воздуха: энтальпию, влагосодержание, температуру, относительную влажность, парциальное давление водяных паров. Диаграмма построена в косоугольной системе координат, что позволяет расширить область ненасыщенного влажного воздуха и делает диаграмму удобной для графических построений. По оси ординат диаграммы отложены значения энтальпии I, кДж/кг сухой части воздуха, по оси абсцисс, направленной под углом 135° к оси I, отложены значения влагосодержания d, г/кг сухой части воздуха.

Поле диаграммы разбито линиями постоянных значений энтальпии I = const и влагосодержания d = const. На него нанесены также линии постоянных значений температуры t = const, которые не параллельны между собой — чем выше температура влажного воздуха, тем больше отклоняются вверх его изотермы. Кроме линий постоянных значений I, d, t, на поле диаграммы нанесены линии постоянных значений относительной влажности воздуха φ = const. В нижней части I—d-диаграммы расположена кривая, имеющая самостоятельную ось ординат. Она связывает влагосодержание d, г/кг, с упругостью водяного пара pп, кПа. Ось ординат этого графика является шкалой парциального давления водяного пара pп.

Состояние влажного воздуха на психометрической диаграмме определяется с помощью двух указанных параметров. Если, мы выберем любую температуру по сухому термометру и любую температуру по мокрому термометру, то точка пересечения этих линий на диаграмме является точкой, обозначающей состояние воздуха при данных температурах. Состояние воздуха в данной точке обозначено совершенно определённо.

Когда на диаграмме найдено определённое состояние воздуха, все остальные параметры воздуха могут быть определены с помощью J-d диаграммы .

Пример 1.

t = 35°С , а температура точки росы ТР равна t Т.Р. = 12°С , чему равна температура по мокрому термометру?

Решение см. рисунок 6.

На шкале температур находим численное значение температуры точки росы t Т.Р. = 12°С и проводим линию изотермы φ = 100% . Получаем точку с параметрами точки росы — Т.Р .

Из этой точки d = const t = 35°С .

Получаем искомую точку А

Из точки А проводим линию постоянного теплосодержания — J = const до пересечения с линией относительной влажности φ = 100% .

Получаем точку мокрого термометра - Т.М.

Из полученной точки — Т.М. проводим линию изотермы — t = const до пересечения со шкалой температур.

Считываем искомое численное значение температуры мокрого термометра — Т.М. точки А , которое равно

t Т.М. = 20,08°С.

Пример 2.

Если температура влажного воздуха по сухому термометру равна t = 35°С , а температура точки росы t Т.Р. = 12°С , чему равна относительная влажность?

Решение см. рисунок 7.

t = 35°С и проводим линию изотермы — t = const .

t Т.Р. = 12°С и проводим линию изотермы — t = const до пересечения с линией относительной влажности φ = 100% .

Получаем точку росы — Т.Р .

Из этой точки — Т.Р. проводим линию постоянного влагосодержания — d = const t = 35°С .

Это и будет искомая точка А , параметры которой были заданы.

Искомая относительная влажность в этой точке будет равна

φ А = 25%.

Пример 3.

Если температура влажного воздуха по сухому термометру равна t = 35°С , а температура точки росы t Т.Р. = 12°С , чему равна энтальпия воздуха?

Решение см. рисунок 8.

На шкале температур находим численное значение температуры по сухому термометру — t = 35°С и проводим линия изотермы — t = const .

На шкале температур находим численное значение температуры точки росы — t Т.Р. = 12°С и проводим линию изотермы — t = const до пересечения с линией относительной влажности φ = 100% .

Получаем точку росы — Т.Р.

Из этой точки — Т.Р. проводим линию постоянного влагосодержания — d = const до пересечения с линией изотермы по сухому термометру t = 35°С .

Это и будет искомая точка А , параметры которой были заданы. Искомое теплосодержание или энтальпия в этой точке будет равна

J А = 57,55 кДж/кг.

Пример 4.

При кондиционировании воздуха, связанного с его охлаждением (тёплый период года) мы в основном заинтересованы в определении количества тепла, которое должно быть отведено, чтобы в достаточной степени охладить воздух для поддержания расчётных параметров микроклимата в помещении. При кондиционировании воздуха, связанного с его нагревом (холодный период года), наружный воздух необходимо подогреть для обеспечения расчётных условий в рабочей зоне помещения.

Предположим, например, что наружная температура воздуха по мокрому термометру равна t H T.M = 24°С , а в кондиционируемом помещении необходимо поддерживать t B T.M = 19°С по мокрому термометру.

Общее количество тепла, которое необходимо отвести от 1 кг сухого воздуха, определяется по следующей методике.

См. рисунок 9.

Энтальпия наружного воздуха при t H T.M = 24°С по мокрому термометру равна

p= J Н = 71,63 кДж/ на 1 кг сухого воздуха.

Энтальпия внутреннего воздуха при t B TM = 19 °С по мокрому термометру равна

J В = 53,86 кДж/ на 1 кг сухого воздуха.

Разность энтальпий между наружным и внутренним воздухом равна:

JН — JВ = 71,63 — 53,86 = 17,77 кДж/кг.

Исходя из этого, общее количество тепла, которое должно быть отведено при охлаждении воздуха с t H T.M = 24°С по влажному термометру до t B T.M = 19°С по влажному термометру, равно Q = 17,77 кДж на 1 кг сухого воздуха , что равно 4,23 ккал или 4,91 Вт на 1 кг сухого воздуха.

Пример 5.

Во время отопительного сезона необходимо нагреть наружный воздух с t Н = - 10°С по сухому термометру и с t H T.M = - 12,5°С по мокрому термометру до температуры внутреннего воздуха t В = 20°С по сухому термометру и t B T.M = 11°С по мокрому термометру. Определить количество сухого тепла, которое должно быть добавлено к 1 кг сухого воздуха.

Решение см. рисунок 10.

На J–d диаграмме по двум известным параметрам – по температуре сухого термометра t Н = - 10°С и по температуре мокрого термометра t H T.M = - 12,5°С определяем точку наружного воздуха исходя из температуры по сухому термометру t Н = - 10°С и из температуры наружного воздуха – Н .

Соответственно, определяем точку внутреннего воздуха – В .

Считываем теплосодержание — энтальпию наружного воздуха — Н , которая будет равна

J Н = - 9,1 кДж/ на 1 кг сухого воздуха.

Соответственно, теплосодержание — энтальпия внутреннего воздуха — В будет равна

J В = 31,66 кДж/ на 1 кг сухого воздуха

Разность энтальпий внутреннего и наружного воздуха равна:

ΔJ = J В — J Н = 31,66 — (-9,1) = 40,76 кДж/ кг.

Это изменение количества тепла является изменением количества тепла только сухого воздуха, т.к. нет изменения его влагосодержания.

Сухое или явное тепло – тепло , которое добавляется или отводится от воздуха без изменения агрегатного состояния пара (изменяется только температура).

Скрытая теплота – тепло, идущее на изменение агрегатного состояния пара без изменения температуры. Температура точки росы обозначает влагосодержание воздуха.

При изменении температуры точки росы происходит изменение влагосодержания, т.е. иными словами, влагосодержание может быть изменено только при изменении температуры точки росы. Необходимо отметить поэтому, что если температура точки росы остаётся постоянной, то влагосодержание также не изменяется.

Пример 6.

Воздух, который имеет начальные параметры t Н = 24°С по сухому термометру и t H T.M = 14°С по мокрому термометру, должен быть кондиционирован, чтобы его конечные параметры стали равны t К = 24°С по сухому термометру и t K T.M = 21°С по мокрому термометру. Необходимо определить количество добавляемой скрытой теплоты, а также количество добавляемой влаги.

Решение см. рисунок 11.

На шкале температур находим численное значение температуры по сухому термометру — t Н = 24°С , и проводим линию изотермы — t = const .

Аналогично, на шкале температур находим численное значение температуры по мокрому термометру — t H T.M. = 14°С , проводим линию изотермы — t = const .

Пересечение линии изотермы — t H T.M. = 14°С с линией относительной влажности — φ = 100% даёт точку мокрого термометра воздуха с начальными заданными параметрами — точка М.Т.(Н) .

Из этой точки проводим линию постоянного теплосодержания — энтальпии — J = const до пересечения с изотермой — t Н = 24°С .

Получаем точку на J-d диаграмме с начальными параметрами влажного воздуха — точка Н , т считываем численное значение энтальпии

J Н = 39,31 кДж/ на 1 кг сухого воздуха.

Аналогично поступаем для определения точки влажного воздуха на J-d диаграмме с конечными параметрами — точка К .

Численное значение энтальпии в точке К будет равно

J К = 60,56 кДж/ на 1 кг сухого воздуха.

В данном случае к воздуху с начальными параметрами в точке Н необходимо добавить скрытое тепло, чтобы конечные параметры воздуха находились в точке К .

Определяем количество скрытого тепла

ΔJ = J К - J Н = 60,56 — 39,31 = 21,25 кДж/ кг.

Проводим из начальной точки — точка Н , и конечной точки — точка К вертикальные линии постоянного влагосодержания — d = const , и считываем значения абсолютной влажности воздуха в этих точках:

J Н = 5,95 г / на 1 кг сухого воздуха;

J К = 14,4 г / на 1 кг сухого воздуха.

Взяв разность абсолютных влажностей воздуха

Δd = d К -d Н = 14,4 — 5,95 = 8,45 г / на 1 кг сухого воздуха

получим количество влаги, добавляемой на 1 кг сухого воздуха.

Изменение количества тепла является изменением количества только скрытой теплоты, т.к. нет изменения в температуре воздуха по сухому термометру.

Наружный воздух при температуре t Н = 35°С по сухому термометру и t H T.M. = 24°С по мокрому термометру — точка Н , должен быть перемешан с рециркуляционным воздухом, имеющим параметры t Р = 18°С по сухому термометру и φ Р = 10% относительной влажности — точка Р.

Смесь должна состоять из 25% наружного воздуха и 75% рециркуляционного воздуха. Определить конечные температуры смеси воздуха по сухому и влажному термометрам.

Решение см. рисунок 12.

Наносим на J-d диаграмму точки Н и Р согласно исходных данных.

Соединяем точки Н и Р прямой линией — линией смеси.

На линии смеси НР определяем точку смеси С исходя из соотношения, что смесь должна состоять из 25% наружного воздуха и 75% рециркуляционного воздуха. Для этого от точки Р откладываем отрезок равный 25% всей длины линии смеси НР . Получим точку смеси С .

Оставшаяся длина отрезка СН равна 75% длины линии смеси НР .

Из точки С проводим линию постоянной температуры t = const и на шкале температур считываем температуру точки смеси t С = 22,4°С по сухому термометру.

Из точки С проводим линии постоянного теплосодержания J = const до пересечения с линией относительной влажности φ = 100% и получаем точку температуры мокрому термометра t C T.M. смеси. Для получения численного значения из этой точки проводим линию постоянной температуры и на шкале температур определяем численное значение температуры влажного термометра смеси, которое равно t C T.M. = 12°С .

При необходимости на J-d диаграмме можно определить все недостающие параметры смеси:

  • теплосодержание, равное J С = 33,92 кДж/кг ;
  • влагосодержание, равное d С = 4,51 г/кг ;
  • относительную влажность φ С = 27 % .

После прочтения данной статьи, рекомендую прочитать статью про энтальпию , скрытую холодопроизводительность и определение количества конденсата, образующегося в системах кондиционирования и осушения :

Доброго времени суток уважаемые начинающие коллеги!

В самом начале своего профессионального пути я наткнулся на данную диаграмму. При первом взгляде она может показаться страшноватой, но если разобраться в главных принципах, по которым она работает, то можно её и полюбить:D. В быту она называется и-д диаграмма.

В данной статье я попытаюсь просто(на пальцах) объяснить основные моменты, чтобы вы потом отталкиваясь от полученного фундамента самостоятельно углубились в данную паутину характеристик воздуха.

Примерно так она выглядит в учебниках. Как-то жутковато становится.


Я уберу все то лишнее, что не будет мне нужным для моего объяснения и представлю и-д диаграмму в таком виде:

(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Все равно еще не совсем понятно, что это такое. Разберем её на 4 элемента:

Первый элемент - влагосодержание (D или d). Но прежде чем я начну разговор об влажности воздуха в целом, я бы хотел кое о чем с вами договориться.

Давайте договоримся “на берегу” сразу об одном понятии. Избавимся от одного прочно засевшего в нас (по крайней мере, в меня) стереотипа о том, что такое пар. С самого детства мне показывали на кипящую кастрюлю или чайник и говорили, тыкая пальцем на валящий из сосуда “дым”: “ Смотри! Вот это пар”. Но как многие, дружащие с физикой люди, мы должны понимать, что “Водяной пар — газообразное состояние воды . Не имеет цвета , вкуса и запаха”. Это всего лишь, молекулы H2O в газообразном состоянии, которых не видно. А то что мы видим, валящее из чайника - это смесь воды в газообразном состоянии(пар) и “капелек воды в пограничном состоянии между жидкостью и газом”, вернее видим мы последнее (так же, с оговорками, можно назвать то что мы видим - туманом). В итоге мы получаем, что в данный момент, вокруг каждого из нас находится сухой воздух (смесь кислорода, азота…) и пар (H2O).

Так вот, влагосодержание говорит нам о том, сколько этого пара присутствует в воздухе. На большинстве и-д диаграмм данная величина измеряется в [г/кг], т.е. сколько грамм пара(H2O в газообразном состоянии) находится в одном килограмме воздуха (1 кубический метр воздуха в вашей квартире весит около 1,2 килограмма). В вашей квартире для комфортных условий в 1 килограмме воздуха должно быть 7-8 грамм пара.

На и-д диаграмме влагосодержание изображается вертикальными линиями, а информация о градации расположена в нижней части диаграммы:


(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Второй важный для понимания элемент - температура воздуха (T или t). Думаю здесь ничего объяснять не нужно. На большинстве и-д диаграмм данная величина измеряется в градусах Цельсия [°C]. На и-д диаграмме температура изображается наклонными линиями, а информация о градации расположена в левой части диаграммы:

(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Третий элемент ИД-диаграммы - относительная влажность (φ ). Относительная влажность, это как раз та влажность, о которой мы слышим из телевизоров и радио, когда слушаем прогноз погоды. Измеряется она в процентах [%].

Возникает резонный вопрос: “Чем отличается относительная влажность от влагосодержания?” На данный вопрос я отвечу поэтапно:

Первый этап:

Воздух способен вмещать в себя определенное количество пара. У воздуха есть определенная “паровая грузоподъемность”. Например, в вашей комнате килограмм воздуха может “взять на свой борт” не больше 15 грамм пара.

Предположим, что в вашей комнате комфортно, и в каждом килограмме воздуха, находящегося в вашей комнате, имеется по 8 грамм пара, а вместить каждый килограмм воздуха в себя может по 15 грамм пара. В итоге мы получаем, что в воздухе находится 53,3% пара от максимально возможного, т.е. относительная влажность воздуха - 53,3%.

Второй этап:

Вместимость воздуха различна при разных температурах. Чем выше температура воздуха, тем больше пара он может в себя вместить, чем ниже температура, тем меньше вместимость.

Предположим, что мы нагрели воздух в вашей комнате обычным нагревателем с +20 градусов до +30 градусов, но при этом количество пара в каждом килограмме воздуха осталось прежним - по 8 грамм. При +30 градусах воздух может “взять себе на борт” до 27 грамм пара, в итоге в нашем нагретом воздухе - 29,6% пара от максимально возможного, т.е. относительная влажность воздуха - 29,6%.

Тоже самое и с охлаждением. Если мы охладим воздух до +11 градусов, то мы получим “грузоподъемность” равную 8,2 грамм пара на килограмм воздуха и относительную влажность равную 97,6%.

Заметим, что влаги в воздухе было одинаковое количество - 8 грамм, а относительная влажность прыгала от 29,6% до 97,6%. Происходило это из-за скачков температуры.

Когда вы зимой слышите о погоде по радио, где говорят, что на улице минус 20 градусов и влажность 80%, то это значит, что в воздухе около 0,3 граммов пара. Попадая к вам в квартиру этот воздух нагревается до +20 и относительная влажность такого воздуха становится равна 2%, а это очень сухой воздух (на самом деле в квартире зимой влажность держится на уровне 10-30% благодаря выделениям влаги из сан-узлов, из кухни и от людей, но что тоже ниже параметров комфорта).

Третий этап:

Что произойдет, если мы опустим температуру до такого уровня, когда “грузоподъемность” воздуха будет ниже, чем количество пара в воздухе? Например, до +5 градусов, где вместимость воздуха равна 5,5 грамм/килограмм. Та часть газообразного H2O, которая не умещается в “кузов” (у нас это 2,5 грамм), начнет превращаться в жидкость, т.е. в воду. В быту особенно хорошо виден этот процесс, когда запотевают окна в связи с тем, что температура стекол ниже, чем средняя температура в комнате, на столько что влаге становится мало места в воздухе и пар, превращаясь в жидкость, оседает на стеклах.

На и-д диаграмме относительная влажность изображается изогнутыми линиями, а информация о градации расположена на самих линиях:


(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Четвертый элемент ID диаграммы - энтальпия (I или i). В энтальпии заложена энергетическая составляющая тепловлажностного состояния воздуха. При дальнейшем изучении (за пределами этой статьи, например в моей статье про энтальпию ) стоит обратить на неё особое внимание, когда речь будет заходить об осушении и увлажнении воздуха. Но пока особого внимания на этом элементе мы заострять не будем. Измеряется энтальпия в [кДж/кг]. На и-д диаграмме энтальпия изображается наклонными линиями, а информация о градации расположена на самом графике (или слева и в верхней части диаграммы).

Влажный воздух широко используется в различных областях промышленности, в том числе и на железнодорожном транспорте в системах нагрева, охлаждения, осушения или увлажнения воздуха. В последнее время перспективным направлением развития техники кондиционирования воздуха считается внедрение так называемого косвенно-испарительного метода охлаждения. Это объясняется тем, что такие устройства не содержат искусственно синтезированных хладагентов, кроме этого они бесшумны и долговечны, поскольку в них отсутствуют движущие и быстро изнашиваемые элементы. Для проектирования таких устройств необходимо располагать информацией о закономерностях теплотехнических процессов протекающих во влажном воздухе при изменении его параметров.

Теплотехнические расчеты, связанные с использованием влажного воздуха выполняются с помощью i-d диаграммы (см. рисунок 4), предложенной в 1918 году профессором А.К. Рамзиным.

Эта диаграмма выражает графическую зависимость основных параметров воздуха-температуры, относительной влажности, парциального давления, абсолютной влажности и теплосодержания при заданном барометрическом давлении. Для ее построения на вспомогательной оси 0-d в масштабе, с интервалом, соответствующим 1 грамму откладывают влагосодержание d и через полученные точки проводят вертикальные линии. По оси ординат в масштабе откладывают энтальпию i с интервалом в 1 кДж/кг сухого воздуха. При этом вверх от точки 0, соответствующей температуре влажного воздуха t=0 0 С (273К) и влагосодержанию d=0, откладывают положительные, а вниз – отрицательные значения энтальпии.

Через полученные точки на оси ординат проводят линии постоянных энтальпий под углом 135 0 к оси абсцисс. На полученную таким образом сетку наносят линии изотерм и линии постоянных относительных влажностей. Для построения изотерм воспользуемся уравнением для теплосодержания влажного воздуха:

Его можно записать в следующем виде:

, (1.27)

где t и С св – соответственно температура (0 С) и теплоемкость сухого воздуха (кДж/кг 0 С);

r – скрытая теплота парообразования воды (в расчетах принимается

r = 2,5кДж/г).

Если принять, что t=const, то уравнение (1.27) будет прямой линией, а это означает, что изотермы в координатах i–d представляют собой прямые линии и для их построения необходимо определить только две точки, характеризующие два крайних положения влажного воздуха.

Рисунок 4. i – d диаграмма влажного воздуха

Для построения изотермы соответствующей значению температуры t=0°С (273K) вначале с помощью выражения (1.27) определим положение координаты теплосодержания (i 0) для абсолютно сухого воздуха (d=0). После подстановки соответствующих значений параметров t=0 0 C (273K) и d=0 г/кг выражение (1.27) видно, что точка (i 0) лежит в начале координат.

. (1.28)

Для полностью насыщенного воздуха при температуре t=0°С (273K) и =100% из справочной литературы, например находим соответствующее значение влагосодержания d 2 =3,77 г/кг сух. возд. и из выражения (1.27) находим соответствующее значение энтальпии: (i 2 = 2,5 кДж/г). В системе координат i-d наносим точки 0 и 1 и через них проводим прямую линию, которая и будет изотермой влажного воздуха при температуре t=0 0 С (273K) .

Аналогичным путем можно построить любую другую изотерму, например, для температуры плюс 10 0 С(283). При этой температуре и =100% по справочным данным находим парциальное давление полностью насыщенного воздуха равное Р п =9,21 мм. рт. ст. (1,23кПа), далее и из выражения (1.28) находим значение влагосодержание (d=7,63 г/кг), а из выражения (1.27) определим значение теплосодержание влажного воздуха (i=29,35 кДж/г).

Для абсолютно сухого воздуха ( =0%), при температуре T=10 о С (283К) после подстановки значений в выражение (1.27) получим:

i= 1,005*10= 10,05 кДж/г.

На диаграмме i-d находим координаты соответствующих точек, и проведя через них прямую получим линию изотермы для температуры плюс 10 0 С (283К). Аналогичным образом строится семейство других изотерм, а соединив все изотермы для =100% (на линии насыщения) получим линию постоянной относительной влажности =100%.

В результате выполненных построений получена диаграмма i-d, которая приведена на рисунке 4. Здесь на оси ординат нанесены значения температур влажного воздуха, на оси абсцисс - значения влагосодержания. Наклонные линии показывают величины теплосодержания (кДж/кг). Кривые, расходящиеся пучком из центра координат, выражают величины относительной влажности φ.

Кривая φ=100% называется кривой насыщения; выше ее водяные пары в воздухе находятся в перегретом состоянии, а ниже - в состоянии перенасыщения. Наклонная линия, идущая от центра координат, характеризует парциальное давление водяного пара. Величины парциального давления нанесены справа на оси ординат.

Пользуясь диаграммой i - d, можно при заданной температуре и относительной влажности воздуха определить остальные его параметры - теплосодержание, влагосодержание и парциальное давление. Например, для заданных температуры плюс 25°С (273K) и относительной влажности и φ=40% на диаграмме i - d находим точку А. Перемещаясь от нее по вертикали вниз, на пересечении с наклонной линией находим парциальное давление Р п =9 мм рт. ст. (1,23кПа) и далее на оси абсцисс - влагосодержание d А =8 г/кг сухого воздуха. На диаграмме также видно, что точка А лежит на наклонной линии, выражающей теплосодержание i А = 11 кДж/кг сухого воздуха.

Процессы, протекающие при подогреве или охлаждении воздуха без изменения влагосодержания, изображаются на диаграмме вертикальными, прямыми линиями. На диаграмме видно, что при d=const в процессе нагревания воздуха относительная влажность его уменьшается, а при охлаждении - увеличивается.

С помощью диаграммы i – d можно определять параметры смешиваемых частей влажного воздуха для этого строят так называемый угловой коэффициент луча процесса. Построение луча процесса (см. рисунок 5) начинается от точки с известными параметрами, в данном случае это точка 1.